
i iiiiiii iim^p^wi^m uiiim «„mummw -' ■^■■imi •wm—mm.

i

AD/A-006 401

PARAMETRIC INTEGER PROGRAMMING

Robert M. NAUSS

California Universit>

Prepared for:

Office of Naval Research

January 1975

DISTRIBUTED BY:

KJ
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

mm ■ MMM^MM tUAtt. -*'-- -—-■■ -■■-„ l,M -,, , _.

■HI ■minwiinwi'wir'im'iiii i -mr- ^'■■'mrvq

1 ■ ' ' urn

Security Claitittcation Ä&/1. oo640/
DOCUMENT CONTROL DATA • R&D

fSacurlfr clatflflcadon of i((l» (xidy o(«bdraci and iri>(>><iii|| aiim>f*rinn muol 6« anrararf «*>•» (ft* <ivr»ll ttpnn 11 c Immlimiti

I OmniNATIN G ACTIufY (Corporal* «uihmi

Western Management Science Institute
University of California, Los Angeles

2« 1« [POUT trcuniTv c Ltttiric tk y iOf

Unclassified
2 6 COUP

1 nißonr TITLE

PARAMETRIC INTEGER PROGRAMMING

4 OESCNIPTIve NOTt$ (Typ» of raporf and Inr/iiiiv« d«i*a)

Working Paper
I *UTMOWSWLa»i nam» flral nama. Iniliml)

Nauss, Robert M.

• ntPomr OATK

January, 1975
7a TOTAL NO OF paen

/^c^

yb NO OF REF«

33
la CONTRACT OR GRANT NO

N0O014-69-A-O200-4O42^
6 RROJtCT NO

la ORiaiN« TOR'I REPORT NUMaiRfS;

Working Paper No. 22G -

lb OTHER REPORT NOfS) Mny oiftar number* Ifiar ma^ b* a**i#i*if
Ihlm mperl)

IO>rVi#L4a>LITV/LIMIT*TION N

12 SPONSORING MILITAMV ACTIVITY

11 ABSTRACT

A parametiic Integer linear program (PILP) may be defined as a family of
closely related integer linear programs (ILP). Within this def iriition we incor-
porate not only continuous scalar parameterizatlons but also finite parameter!za-
tlons. These may Include an ILP with a finite number of objective functions or
right hand sides or constraint matrices or any combination of these.

A general framework for PILP is presented. It begins by outlining the need
for PILP algorithms. Basic solution methodologies are explained and two rudimen-
tary approaches for the PILP are stated. Theoretical properties for special
parameterizatlons are proved, and techniques for improving algorithmic efficiency
are discussed. The framework concludes with an examination of underlying factors
which intimately relate to the scheduling of solution priorities in a PILP algo-
rithm.

Three special PILP problem classes eure studied including the 0-1 knapsack,
generalized assignment, and capacitated facility location problems. Algorithms
arc presented, rnqputational results axe cited, and conclusions are drawn con-
cerning the most efficient approaches. As a by-product of these PILP algorithms,
efficient algorithms for the corresponding ILPs in each problem class are also
developed. Finally, an approach for the general PILP is proposed, and directions
for future research are given.

lUpmiliKcH l>.

NATIONAL TECHNICAL
INFORMATION SERVICE

DD /Ä 1473 T10t-l07-SI00 PRICES SUBJECT TO CHANb
Security Classification

Jits:
I,,, llltltimmimmmilMm i. ...».^^MltWMiM ■ ■■ 1^. Ifll r ,

m iliiiiv jiii inf.Wi "11

WESTERN MANAGEMENT SCIENCE INSTITUTE

University of California, Los Angeles

Working Paper No. 226

PARAMETRIC INTEGER PROGRAMMING

by

Robert M. Nauss

January, 1975

/^C

 -J-a—■ ■■ ■ ■■■-

"i'-iiinii "■! m* 'i"». ■..»■ ■ ■■ ■ "!■• -—- •"' ■■•• ' -■ '-w—.,». i.M.mT. r, m um »JH.»" »■■

''■ WIWW'WWP

UNIVERSITY OP CALIFORNIA

Los Angeles

Parametric Integer Programming

A dissertation submitted in partial satisfaction of the

requirements 'or the degree Doctor of Philosophy

in Management

by

Robert Milton Nauss

1974

; if

MMriMfeMMMlMMMi -.--„M.»-^^—»jyy^^^.,

wmmii inn • i mumvinmw ' 'm "•" mm i-tr ■ ■■ ■) IH-THI, iMlfim'immiKim'.imiimiU'-nivmmmutwqii'mK in -- ii] in i

The dissertation of Robert Milton Nauss Is approved, and it is

acceptable In quality for publication on microfilm.

'CM (
Bruce Mill

cJyuul'f- I'IK i _^-
Charles R. Seherer c

'KW^JC UJL^JC^C^
d Erlenkotter

M^y>£^
Glenn W. Graves

£?<:'//-■--
Arthur M. Geoffrion, Committee Chairman

University of California, Los Angeles

1974

11

'- - —- miiMiii

wmimimmm^m*mmm 11 —■-■ p-i "■•■"

• iwMwtmwNnMWi** WBW'WPPWWI»

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS v

VITA vi

ABSTRACT vii

I. INTRODUCTION 1

A. The Need for PILP Algorithms ^

B. Basic Methodologies for Solving the PILP 7

1. Cutting Plane Approach 9

2. Branch and Bound Approach 14

II. CHARACTERISTICS AND PROPERTIES OF PARTICULAR

PARAMETERIZATIONS 17

A. Transformation of a Continuous Pure PILP to a Finite

PILP 18

B. Theoretical Properties for Right Hand Side and

Constraint Matrix Parameterizations 19

C. Theoretical Properties for Objective Function

Parameterizations 21

III. PROBLEM DEPENDENT TECHNIQUES FOR IMPROVING ALGORITHMIC

EFFICIENCY 30

IV. SCHEDULING SOLUTION PRIORITIES FOR PILPS 35

V. THE PARAMETRIC 0-1 KNAPSACK PRDBLEM 41

A. An Algorithm for the 0-1 Knapsack Problem 42

B. The 0-1 Knapsack Problem with a Finite Number of Right

Hand Sides 48

C. The 0-1 Knapsack Problem with a Finite Number of

Objective Functions 59

D. The 0-1 Knapsack Problem with a Continuous Objective

Function Parameterization 60

Tables A - F 62

in

•MM •■-- ■■ -' I

•I WIP I I "H I

*?**tf*(«f»<^?

'■■'ww^w»wiiippi|iwswp*»p^,^',w,'^^iilppppB||pBP'wiii«^^ i^mmmmfi

VI. THE PARAMETRIC GENERALIZED ASSIGNMENT PROBLEM 69

A. An Algorithm for the Generalized Assignment Problem. . . 70

b. The Generalized Assignment Problem with a Finite Number

of Right Hand Sides 76

C. The Generalized Assignment Problem with a Finite Number

of Objective Functions 85

D. The Generalized Assignment Problem with a Continuous

Objective Function Parameterization 88

Tables G - L . 90

VII. THE PARAMETRIC CAPACITATED FACILITY LOCATION PROBLEM 100

A. An Algorithm for the Capacitated Facility Location

Problem 101

B. An Interactive Approach for the Parametric Capacitated

Facility Location Problem 113

Tables M - N 124

VIII. EXTENSIONS TO THE GENERAL PILP AND AREAS FOR FUTURE RESEARCH 128

A. A Solution Method for the General PILP 128

B. Future Research 135

BIBLIOGRAPHY 138

IV

■HMIIiiMBIBB \tMmtmmlimtmktiim*ii i i i _^i; ■ -- - -

■ pmap WPWJWW^'^^W^ppupw ■p I -"-,,," in i,.i iiiiiii..iuimwa>i .■■.■•■<^^ »i». II»I» ji i-m

«MMICaDmfXWtaa. » ,. oMmaMQ

■

ACKNOWLKDGMENTS

I wish to express my gratitude to my advisor, Professor Arthur M.

Geoffrio'i. He suggested the topic of this dissertation and was instru-

mental in laying the groundwork for much of what appears in this volume.

His criticisms and suggestions in the course of our many discussions

were both insightful and inspiring.

This research was partially supported by the National Science

Foundation under Grant GP-36090X and ^he Office of Naval Research under

Contract N00014-69-A-0200-4042. Partial support was also provided bv

a University of California Regents' Fellowship. The Western Manageme it

Science Institute provided secretarial and reproduction services, and

the Campus Computing Network at UCLA supplied a portion of the computer

support.

MMaMMa.ta. Ma^MtMB ■-■■.i -i ■ H, jM^MM^ja—a—<m

■ "■'—^

MiMMK mi - '

■f./j iini i mi^.H

VITA

—Bom,

1965-1970—Engineering Co-op Student, McDonnell Douglas Corporation,
St. Louis, Missouri

1970—B.S., Northwestern University

1970-19''2—National Science Foundation Traineeship

1972—M.S., Cornell University

1972-1974—Univercity of California Regents' Fellowship

1973-1974—Research Assistant, Graduate School of Management, University
of California, Los Angeles

PUBLICATION

Nemhauser, G.L., Trotter, L.E.,Jr., and Nauss, R.M., "Set Partitioning
and Chain Decomposition," Management Science, Vol. 20, No. 11 (July
1974), pp. 1413-142 3.

vi

II I l [■■llll I I

mm ^"■^^P^WWW""^"'" |l!" •' '■" ' r^ ' '■ ' i i»pi"ii»mnMii»mi.iin"»wi'W"»i'i '-'■■»M!.,<p.i'ii'n-n W"^™--,-, ^. ^^

ABSTRACT OF THE DISSERTATION

Parametric Integer Programming

by

Robert Milton Nauss

Doctor of Philosophy in Management

University of California, Los Angeles, 1974

Professor Arthur M. Geoffrion, Chairman

A parametric integer linear program (PILP) may be defined as a

family of closely related integer linear programs (ILP). Within this

definition we incorporate not only continuous scalar parameterizationsi

but also finite parameterizations. These may include an ILP with a

finite number of objective functions or right hand sides or constraint

matrices or any combination of thco^.

A general framework for PILP is presented. It begins by outlining

the need for PILP algorithms. Basic solution methodologies are ex-

plained and two rudimentary approaches for the PILP are stated. The-

oretical properties for special parameterizations are proved, and

techniques for improving algorithmic efficiency are discussed. The

framework concludes with an examination of underlying factors which

intimately relate to the scheduling of solution priorities in a PILP

algorithm.

Three special PILP problem classes are studied includinc, the 0-1

knapsack, generalized assignment, and capacitated facility location

problems. Algorithms are presented, computational results are cited,

and conclusions are drawn concerning the most efficient approaches.

Vll

MMMMMMMÜHMH in MMMÜltll Mil
■

■^««miliipp«" i > mi "—™'^^- UP> ..ipw^.«^—. . .. •<.w> dHH «■" Tfip

As a by-product of these PILP algorithms, efr%'cient algorithms for the

corresponding ILPs in each problem class are also developed. Finally,

an approach for the general PILP is proposed, and directions for future

research are given.

Vlll

Jfl^Jg IfciWHiiiwinfi"-'--- -
 '--■' ■ n i -I "t*J"1 Ml^rnnii ii if mii li«*.n ii ■ 1 i m . ^

W^wfrWI^fWfVf^ri» '■•

UM II ■PPPPPr 11,1 lllllll IIAVIOT^"»**! >■ Itfl ^JWIW^^W*

■"JWJfl'»'''"'^.^';

I. INTRODUCTION

A parametric Integer linear program (PILP) may be defined as a

family of closely related integer linear programs (JLP). Parametric

linear programming (PLP) theory is firmly entrenched, and a parametric

capability is provided in most commercial linear progranming (LP)

packages. PILP, on the other hand, is a virgin field. This is natural

since until recently methods for solving ILPs were not efficient.

However in the put few years the state-of-the-art for ILP has blossomed

forth to such an extent that research on PILP solution techniques may

be undertaken with some feeling of optimism.

VIP is traditionally thougbt of as varying a scalar parameter

continuously over a specified range, resulting in a continuum of

objective functions or of right hand sides {resource allocations).

However, it is not used as extensively as one might think. This is

partly due to the fact that the solution output generally contains much

more information them management wants or needs, and partly because

very small changes in the data are often not of interest. Rather,

management generally desires the solution to a finite number of revised

models. In the interest of solving the entire collection of problems

efficiently, the analyst generally uses the optimal LP basis for one

problem as an initial basis for a revised problem.

Analogously, while continuous parameterization is of some interest

in HLP, the definition of PILP should be expanded to include finite

parameterizations. Specifically, one mny v^ry a parameter over a fixed

number of points instead of over a continuous range. This results in a

ttHHtmitmäu-, i ,, i .Kn^^aa^iaM^fl, i antaaitfMUMni

mfm*m*tmrm***Hm'***^m mv ' " mi— ■ - ■ -i"1 ■ H« ■ ■ ■ ■ ■

finite number of objective functions or right hand sides. An example

is a capital budgeting problem which is modeled as an ILP. Since the

precise cost of capital is rarely known (generally an educated guess

is made), a logical approach would be to generate an objective function

for each cf a series of estimated coots of capital. Using this finite

set of objective functions, a finite number of ILPs (which heretofore

had to be solved independently) is transformed into a PILP with a finite

number of objective functions. Another type of parameterization which

should be included in the definition is varying the objective function,

the right hand side, and/or the constraint coefficients simultaneously.

Varying the constraint coefficients could also be defined to include

adding or deleting variables and constraints. PILP, then, may be
■

divided into three broad categories:

parameterization over a finite number of points (includinc,

simultaneous changes in the objective function, right hand .

side, and constraint coefficients)

one parameter varied continuously over a specified -ange

two or more parameters varied continuously over specified

ranges.

Due to the increased complexity of the third category we shall address

only the first two.

Mathematical representations of parameterizations for the two

categories to be addressed are given below. Let x be an n-vector, b

an m-vector, and A an m*n matrix.

ifii - -- -- ■ -^'— .■ __, _ ^ _ ^ mttmmammm

■ MIHJ ■■■,.,,.^^W Wl IPHIP' ■ II i i.l.W». - Hi um iv U «lig uil(lli^.r|iiJi .H-Wi V"' •l|l■. -^•^^wwr^*"^' »w ■ ii-r^«-■• - ^WT»-,^-— ' ' ■'" J"'wm

Finite parameterization

For k « l,...^ solve:

min (c + f,)x
k

(A + Dk)x >_ (b + rk)

x. integer, j e J

where f , D , r are conformable with c, A, b respectively.

Continuous parameterizations

For V 9 e [0,1] solve:

min (c + 9f)x

Ax ^ b

x. integer, j e J

and for V 6 c [0,1] solve:

min ex

Ax > b + or

x. integer, j e J

where f, r are conformable with c, b respectively and where 6 is a

scalar. Of course, in the finite case the parameterization may be

confined to only the objective function, or the right hand side, or

the constraint matrix.

At this point some mention should be made of work which has already

been done in this field. It appears that Rocdman [1972,1973] was the

first to do any computational work in the area. Basically he has devised

a method for one-atM-time (e.g., one cost coefficient or one resource)

sensitivity analysis utilizing the fathomed nodes in the branch and bound

tree generated for the ILP. Bowman [1974] has addressed ILP sensitivity

i^MM ^^Hk^BMMMMMMMI —— -— ■ ■ ■ ■..■..-—

■ IIPI^ Pll.niiiii^. in.,,! .,..l-^-_^.
" II—WT I «,1 !l II Jin

WWMWmnwinmiWfW'THiwniwiiwi n m ii «ww

- " ■'■w"

from a group theoretic point of view. However» the practicality of his

method has not yet been demonstrated. Noltemeier [1970] has done some

theoretical work in the area of ILP sensitivity, but he has not performed

any computational studies. Piper and Zoltners [1973b] have attacked the

problem of solving closely related ILPs by finding a set of the k best

feasible solutions to an ILP. Sufficiency tests are proposed, which if

passed, assure that an optimal solution to a revised ILP remains in the

set. A recent paper by Radke [1974] is concerned with continuity theory

in mixed integer programming. While it is essentially a theoretical

treatise, it does prescribe methods for eliminating the bogey of dis-

continuity in some problems.

The plan jf the paper is as follows. In the remainder of this

chapter the lotivation for studying PILP is outlined by presenting types

of analysis i-." which a PILP formulation may be effective. Basic

solution methocLVnies for PILP are presented, and two rudimentary

algorithms are givm. Characteristics and properties of special

parameterizations are given in chapter II, and in chapter III problem

dependent techniques for improving algorithmic performance are set forth.

Factors affecting the scheduling of solution priorities for the PILP are

examined in chapter IV, and three different priority schemes are pre-

sented. In chapters V, VI, and VII the ideas and results of chapters

II-IV are applied to special problem classes including the 0-1 knapsack

problem, the generalized assignment problem, and the capacitated facility

location problem. Algorithms are stated, computational result? cited,

and conclusions drawn concerning the most efficient algorithms for each

problem class. Finally in chapter VIII em approach for the general PILP

mm^mm -~ -- MM HM mm — , | an ''"^------""r i r i täm

iw^^ unmii i luiwiiiin i.ii .i.ipMmPi.... mi iw L pi ii»iWt inn i .miiinmpipni^iii. .,■;..,,.■■■ ■....,..,-. .■.^. .- - - i^.^..„i, —■

■ ■ MI " ■ -

is proposed, and directions for future research are given.

We advise the reader that problem notations remain valid for

individual chapters only.

A. The Need for PILP Algorithms

Oftentimes in practical ILP applications, finding an "optimal"

solution to a model is not the only requirement. Managers may also be

interested in solutions which are close to optimal, or they may want to

know what happens if a certain change is made in the model. Some cost

coefficients or right hand sides may not be known with certainty, and

hence the manager must know how the optimal solution behaves as these

parameters are varied in the model. Rarely, then, is an optimal solution

sufficient for the needs of management. In most applications various

types of analysis must be done, and many of them can be classified under

the broad term, PILP. This is because they satisfy the criteria of

being a family of closely related ILPs. Quite a few types of analysis

are mentioned in Geoffrion [1974a]. These along with some others are

given below.

• Sensitivity analysis; When probleu, data in an ILP is not known pre-

cisely, point estimates must be used in the model. Varying this data

over a range of estimates allows management to determine how sensitive

an optimal solution and value are to changes in the data.

Shadow price analysis: In every linear programming solution, shadow

prices are available from the final tableau. These prices reflect the

value of an extra unit of resource. Unfortunately, reliable shadow

prices are not available in ILP. By varying a right hand side coeffi-

•MMM -- ilii—ll ■— i

II I III!» I, ■——■ — HI» I , 111^.11.11. I »^

l

cient and observing how the optimal value changes, it is possible to

get an approximation of the value of an ex-tra unit of a particular

resource.

Tradeoff analysis; When two or more criteria are reflected in a

model, management must know the tradeoffs involved in balancing one

criteria against another. For example, a tradeoff curve between

customer service and total cost in a distribution system depicts how a

change in customer service affects total distribution cost. Such an

analysis would be done by varying the customer service parameters in

the model over a suitable range.

Continuity analysis [Radke 19741: In linear programming, continuity

of the optimal solution value with respect to problem data is generally

taken for granted. In integer programming, however, serious disconti-

nuities are more likely to occur. The analyst is interested in finding

sufficient conditions for which continuity holds. Failing this, he

would like to identify points of serious discontinuity. If a disconti-

nuity exists and it is an acrurate representation of the real world

system, he may want to alter the problem data in order to improve the

objective value. If it is not an accurate representation, a reformula-

tion of the model may be required so that it more accurately represents

the real world system. The task of identifying discontinuities or

verifying that there are none in the region of internst can often be

accomplished by systematically varying problem data over some neighbor-

hood. Thus a number of closely related problems may be fomulated as

a PILP.

Contingency analysis; ILP models must make specific assumptions,

- -- i

wmmmmm^mmmm»ft«mvi ' ' ' ^^^^

and hence cannot handle all possible "states of nature." For instance,

the uncertainty associated vith major unlikely events might best be

treated externally to the model via modified formulations of the model.

Thus a number of ILPs, each of which corresponds to some contingency,

might be solved as a PILP.

Implementation priority analysis; Management needs to measure the

importance of various components of an optimal solution. This informa-

tion is used in assigning implementation priorities to various contem-

plated changes in the real world system. If some individual changes

result in only marginal savings, they might be deferred until some

later time, or possibly might not be implemented at all. Those changes

which produce significant savings, however, might be implemented in the

near future with an eye toward overall corporate restraints such as
i

limited capital expenditures in a given period. Since each priority

formulation is an ILP, it is clear that a number of such formulations

may be solved as a PILP.

Each of these types of analysis demonstrates a need for solving

closely related ILPs efficiently. The goal of this study is to satisfy

this need.

B. Basi'- Methodologies for Solving the PILP

It is natural to look to ILP solution methodology for ideas on form-

ulating a solution methodology for PILP. ILP solution techniques tend

to fall into three distinct categories: cutting plane, group theory,

»r.ü bianch and bound. Garfinkel and Nemhauser [1972] give a detailed

account of each of these categories.

With one notable exception (Martin [1963]), cutting plane techniques

^^^^gUtg/tttJUMMIIti i n i. - i«iin in- ——- - ,^M^., ii»rim»a««lMiM«mh«

immp

M
'■■■"'"—"^ ^—■■——~— ""■' "miii i mil IIJIMII HI , M >ium iimn* i

Ü

have not been overly successful in practice. Since cutting plane methods

are dual based, no feasible solutions are generated along the way to

finding an optimal solution. This is a serious drawback since even

though finite convergence is assured for many cutting plane algorithms,

no upper bound can be put on the number of iterations required to find

an opti- «an. This lack of an upper bound on the convergence of the

algorithms, coupled with the inability to systematically generate

feasible solutions, generally makes cutting plane methods unattractive

in real world ILP applications.

Group theoretic methods have been applied to pure ILPs for the most

part. While some advances have been made, computational experience has

shown that group methods are not as effective as the branch and bound

approach, although they may be useful within a branch and bound

framework.

Branch and bound methodology has come to the fore in ILP technology.

Due to the inherent flexibility of this approach, problems with special

structure can be solved efficiently by taking advantage of properties

associated with the special structure. Furthermore, feasible solutions

are often generated before optimality is proved so that if early termina-

tion is necessary, a good feasible solution will be available in most

cases.

In the remainder of this chapter some PILP analysis will be devel-

oped using cutting plane methods. However, as would seem to be true in

ILP, the most effective use of cutting planes appears to be incorporating

them in a branch and bound approach. The bulk of the analysis conse-

quently will be an outgrowth of ILP branch and bound methodology.

■HtaMMMtuaa ■HMMMHIMMM
'■'*■ ''■-■■ ■ ' '■ - 'I ■ Ml l|

^^^WWiwn--»—~»—^----•—-^-^---^—-^----—-^^w^--—^——— -^..i. . HI Mp.» »n i mi i , .i,|t^

l

As a means for understanding the relationship between ILP and PILP

solution techniques, two rudimentary algorithms for solving a PILP will

be given. The first approach utilizes cutting planes while the second

uses branch and bound. These algorithms should provide a springboard

for the more detailed analysis in Inter chapters.

1. Cutting Plane Approach

Thv main idea behind cutting plane algorithms in ILP is to "cut off"

portionr. of the linear programming feasible region while leaving the ILP

feasible region (i.e., the convex hull) untouched. The optimal linear

programming solution ^us approaches the optimal integer solution as the

LP feasible region approaches that of the ILP feasible region. Computa-

tional experience has shown that the first few cuts are often very

effective in removing large parts of the LP feasible region. However,

later cuts tend to become more and more degenerate, and progress toward

an optimal ILP solution deteriorates.

This empirical property of cutting plane algorithms might be ex-

ploited in PILP. Assume we have a PILP with a finite number of objective

functions:

For k = 1,...,K solve:

min (c + f)x
x>0

(R) Ax > b (Rk

x. integer, j e J

where c, f , A, b are all integer valued. It is easy to see that the

feasible regions of each (R) are the same. If cuts are made only on

the constraint set, then a cut which is valid for (R) , say, is valid

mmmmammmmmt^ammmitw] 'i M*m i i immmmtmltimmimi

■PHPHPnpiPIIPVWBBRVnnPIW*«" ••-" ■ iiiiiii ■ i im — ■ ■ i i i ■! i »■■■ i (■■iiuiiniai ii ii I^HW^KOW^

r

• •**** ■*.. *...- \mimmiH» \ —ir—

for all other (R,). Of course, a cut made on the objective function may

not be valid for all (R.). Therefore we assume in the following that

such cuts are not allowed.

Since cutting plane algorithms usually perform well during the first

few iterations, a plausible approach for solving the PILP might be the

following. We assume the feasible region is nonempty and bounded.

Solve (R) to LP optlmality. If the optimal solution is not integer

feasible, then cuts are added to (R.) until they become "ineffective",

and then retaining these cuts, (R) is solved to LP optlmality. Cuts

are then added to (R) until they become ineffective, and (R) is then

solved to LP optlmality, etc. When cuts become ineffective for (R) ,

return to (R) and continue the process. The hope is that cuts added

to one problem will eliminate the long series of ineffective cuts for

the other problems.

A cutting plane algorithm for the PILP with a finite number of

right hand sides can also be constructed. Consider the problem:

For k ■ 1,...,K solve:

min ex
x>0

(Qk) Ax >. b + rk

x. integer, j e J .

In the general case some constraints are being tightened and others are

being relaxed as k varies, so that the feasible regions are not neces-

sarily of the form F(Q) 3F(Q) 3 ... pFCQv.)- Up until now it was

thought that cutting planes could not be used under such conditions,

since a cut might be valid for one (Q) but not for another. The fol-

lowing new result allows one to generate a valid cut for all K problems.

In the theorem we shall use the traditional LP notation of the

10

 -J ■ ■ 1—

 -' r..m.. mm " ■ '■ ' ■" ' mmm. i ^ ■

simplex method. Let B be a basis, x be a basic variable under the
o,

1

basis B, NB be the Index set of nonbaslc variables, and x ■ y4 -

-1 - ' I ajaxj where y. ■ (ö b) ., and a., la the updated constraint coef-
jeNB 1:, 3 1 13

flclent for the LP tableau associated with the basis B. We assume that

(Q) Is a pure integer program with c, r , A, b having all Integer

components for k - l,...,K. An analogous result holds for the mixed

integer case as well.

Theorem 1. Given any basic (possibly primal infeasible) solution for

tyj (Q), the traditional Goroory cut, Z (a

th ^NB lj

(using the i row of the tableau as the source row) , does not violate

[a. .))x. > y.
ij D - 'i

the convex hull of integer solutions for (Q)

Proof; Let x be a basic variable and suppose y. < 0. Then x ■ y.
1 _ " i

Z a.^x. =* x„ + I (a. .]x. < y. since x. > 0 V j e NB «• x„ +
jeNB ^ j Bi JCNB ^ 3-yi J " Bi

J) [a.,]x. <_ [y.J since both sides of the inequality must be Integer.
jeNB ^-J J i

Then

x„ + Z a. .x, = y.
i JGNB J J

(xn + Z [a..]x. < [y,])
Bi jeNB ^ D - i

Z (a.. - (a..])x. > y. - [y.)
j.NB ^ ^ 3 ~ i

or letting f. . « a. . - [a. .] and f. = y. - [y.J ,
i] i] ij i i i

we have z f.Jx. > f. . i I
jeNB ^^ * i

Note that the assumption that y, < 0 did not affect the proof.

In order to use this result effectively, we proceed as follows.

Set up the LP tableau for an initial basic feasible solution for (Q)

11

mtmt ■

""^ ^^mmm ■mipiii ^^ mi» i mumi

w
under the basis B,

(QJ

where y is the updated right hand side and z is the associated objec-
l*A

tive function value. Then in columns directly to the left of the
fil

column, add columns for initial (possibly infeasible) basic solutions

for (Q.)» k ■ 2,...,K with respect to the initial basis B found for (Q)

ZK ... Z2 Zl Cj

K 2 1-
y. ... y. y. a. . 'i 'i 'i ij

(QK) ••• (Q2) (Q1)

Now solve the LP for (Q) updating the tableau from iteration to

iteration in the usual manner with the extra columns for k • 2,... ,K

being updated according to the same rules as for k = 1. Assume we have

solved the LP to optimality for (Q) and the solution is not inteyer.

Then we may add the cut (choosing a source row i) : Z f. .x. > f. .
k JeNB ^^ " x

But by Theorem 1 we may add the cut I *i-\x-\ — ^ (usin<3 t*16 same

jeNB 13 J 1

source row) for (Q.) , k - 2,...,K. Note tuat l {i
xj. is the saine for

11 jcNB 3 3

12

'•■•■'-

i iin^impiim '"""■"'■'ii' i .iv'mnrnimmff'm-'<i'Wi''^^mmr~ it<'''t'm.Rmwmm'^^*mipmmv'^''™^»-'Vwnimr*w***'^mini ""' -"-"•' ■.-.■-^-—^-

1

•11 k, so that only one row must be added to the tableau. This row

-1 .2 ,K.
will be E ^jaxJ 1. (f,/f^f • • ff.). The expanded tableau is:

<v

00

(Q2) (Q,

So *-hen for any '. isis B we may add a cut which is valid for each (Q).

Unfortunately, a cut guarantees only to cut off the current solution,

and not to cut off any feasible integer solutions. So if the current

basic solution is infeasihle for some (Q) , it is possible that none

of the feasible LP region of (Q) will be cut off. However, if the

current infeasible solution is "close" to the feasible region, it is

more likely that some of the feasible LP region will be cur off.

It follows that the cutting plane approach given for the finite

objective function PILP can be used also for this finite right hand

side PILP assuming that for each (Q) the feasible region is nonempty

and bounded. By making simple changes to allow for unbounded or empty

feasible regions, this assumption may be dropped.

13

-

 lipililllll»M,IW piw^^iHp.jip, imL) wu in Li iiL mmnw.

yl9HWiyfWf(i3»f#(f r>:! '"WWWUR'.'^'WWWw-.' TW,

^^.i».,.,, ,, im iu .mm, ^III,!!,, m...m,m,f,m
"'11)1 i I" . ■•||l||l i||>* l lllip,,! mil

2. Branch and Bound Approach

We now turn our attention to the method of branch and bound. Due

to the Inherent flexibility of the approach, it is no suxpriae that the

general XLP branch and bound approach may be extended in a straight-

forward manner to the PILP. We shall give a rudimentary ILP algorithm

and then show now it can be generalized to the PILP.

ConPider the ILP:

(P)

nun ex

Ax > b

x integer, j e J

Let v{') be the optimal value of (•). A rudimentary branch and bound

approach for (P) is (Geoffrion and Karsten [19721) :

1. Initialize the candidate list to consist of (P) and set z* to n.

2. Stop if the candidate list is empty: if z* is finite, then the

solution x* associated with z* is optimal in (P) ; otherwise (P)

has no feasible solution.

3. Select one of the candidate problems to become the current

candidate problem (CP).

4. Solve a relaxation of (CP) , namely (f-'O •

5. If F(CP_) = fS or v(CP) >z*, then go to 2.
R K

6. If the optimal solution to (CP) is integer feasible, set z* =

v(CP_), set x* to the optimal solution of (CP) , and go to 2.
R R

7. Separate (CP) into two simpler problems such that the union of

their feasible regions is the feasible region of (CP) . Add these

two problems to the candidate list and go to 3.

14

HMMMMM
^—...ti-t-, ^...tA.,-. „,.. ^-..■.:.. ■ -., ^^gujjj

mm -mrr - ■,-'-—■" ■ ,«„UPI- Ji. M>.>* ■—I ' 1' ■ '"■ll '" "" "" "■'■"• IT'I'II H'lj

„inmtmti'il*'*'*:.'

W& now consider the PILP.

For k > 1,.,.,K solve:

(p
k'

min (c + f.)x

(A + D,)x > b + r,
k — k

x. integer, j E J .

Candidate problems will be denoted by (P) . The subscript k refers
k # R,

i

to the particular problem in the PILP, while R. refers to a particular

restiiction placed on (P) ap a result of separation. An example of such

a restriction would b« to append the constraint x. = 1 to (P.) . Define

Rn to be the null restriction, so that (P, 0) " (P.) V k » 1,...,K.

A rudimentary branch and bound approach for the PILP is:

1. Initialize the candidate list to consist of (P) , (P, _),...,
i.,R0 ^R0

(P.. _) end set z* to «> for k = 1,
K,R K

2. Stop if the ceindidate list is empty: for each k = 1,...,K, if z*
it

is finite, then x* is optimal in (P,) ; otherwise (P,) has no
k k k

feasible solution.

3. Select some subset, S, of the candidate list such that each member

of S has the same R. . For s e S denote the corresponding candidate

problem by (CP) .
K r R. S

4. For each s e S, solve a relaxation, say, (CP, „) , of (CP,) .
k^ s k^ s

5. For each s e S, if either F(CP,) = (? or v((CP1)) > z*, then
k,R. s k,R. s — k

delete £. from S. It S is empty, go to 2.

6. For each s e S, if an optimal solution to (CP) is integer
K, R. S

feasible, set z* = v((CP,)) and x* to the optimal solution of
k k,R. s k

_ i

(CP) and delete s from S. If S is empty, go to 2.
K ^ K. S

7. For each s e S, separate (CP) into two simpler problems such
K f R. S

15

M^MMMHMI «HMMMMIMBHIIMM ^■'-- —■ ■■ Md ...—-.....!-
,-W***^l# ■ ^

mm mmmmm1' '.• '■i" '•■i
piwumjiipp pp ,,„ I,,,, pjw.. mn ■wiiiiiwin.ii.nmn,!, .IIIIIIIIMP,,,^.,,.,,!!,,. <l JPipillW|i|i|>^^IILl|^ ■■pw

i(t.. v.';/ ' ..

that the union of the feasible regions is the feasible region of

(CP, „) . Update R. to reflect this added restriction, and
k,R s r i

go to 3.

Through the choice of the subset S of candidate problems in step

3, flexibility is permitted in determining the order (if any) in which

the individual (P.j's are to be solved. By restricting the choice of

S to those candidate problems with the same R , it may be possible to

utilize parametric reoptimization techniques in step 4. This is the

main reason for allowing more than one candidate problem at a time to

be selected from the candidate list ir. step 3. In steps 5 and 6 if

fathoming occurs for some s e s, then s may be deleted from S since any

further restrictions of (CP,) are not of interest. In step 7
k,R. s

separation occurs for all remaining s e s. In order to capitalize

fully on parametric reoptimization techniques in step 4, it may be

advisable to invoke identical separations for all s e S. However this

is not required. Basically, then, the choice of S in step 3 and the

choice of relaxation in step 4 allows fathoming and separation machinery

to be applied in such a way as to limit the number of relaxations to be

solved and to have control over the creation of new candidate problems.

Armed with these rudimentary approaches for PILP our next task is

to identify and catalog salient characteristics and properties of

special types of parameterizations which may be of use in formulating

more sophisticated algorithms. This is the topic of the next chapter.

16

- -Mü
. i.«iir»ilii.«M«-.^^MMi

mF*m •wwwwwiw"^""", i ii i m» II MH.p. I....^I.,^

II. CHARACTERISTICS AND PROPERTIES OF PARTICULAR PARAMETERIZATIONS

Aside from characteristics of specific problem classes, a PILP

possesses other characteristics and properties which may influence the

solution strategies to be used in an efficient algorithm. These

attributes generally depend on the type of analysis which is being

undertaken, e.g., tradeoff, sensitivity, priority, etc. A representative

checklist of attributes is:

• Are all the ILP problems which make up the PILP known in advmce?

An example of where this may not be the case is in a priority

analysis. This analysib depends in a sequential fashion on the

optimal solutions to selected ILPs; generally it is impossible to

state explicitly in advance all of the ILPs which are to be solved.

• How many ILP problems make up the PILP? Are there just a few,

a dozen, a continuum, or is the number unknown?

• How eure the individual ILP problems related to one another?

Do they differ only in the objective function or only in the

right hand side? Does the constraint matrix change? Are

variables added or deleted? Are constraints added or deleted?

Is there a continuous parameter of change? Are the feasible

regions or the objective functions changing monotoneiy?

• What optimality tolerance is required? Is e-optimality or

"beating some threshold" tho criterion? Is the threshold value

known in advc*."«» for each problem or does it depend on inter-

mediate solution results?

Associated with some of these attributes are properties which may

be used to advantage in algorithmic design. Some of these properties

17

nlilMMil
""■"- ■ " —IIUM

'■—' r II a

mmn, ^mwr^*"* ■ "" '»•"""""'"l ' ' mini in, iiiiipMpin i|i|< !«•> ipign i,, pjp i nwfipii HI up .-T- I«HI»II,I i L HUM I " tm

■'WWW»**^^ ■ nnjinKfi^iiiOTin

I allow the transformation of a given PILP into a hopefully simpler PILP.

Otherr deal with the behavior of the optimal solution and value for

special types of parameterizations.

A. Transformation of a Continuous Pure PILP to a Finite PTLP

(Te)

Consider the pure integer PILP:

For V 9 E [0,1] solve:

min ex

Ax ^ b + Sr

x integer

where x is an n-vector and b is an m-vector. We assume that each

component of c, b, r, and each entry of A is integer valued. The ele-

mentary result which follows (cf. Noltemeier [1970]) shows that it is

possible to transform the continuum of problems over V 6 e [0,11 into

an equivedent PILP with a finite number of right hand sides.

Theorem 2. The PILP, (T) V 9 e [0,1], may be transformed into an ————— Q

equivalent PILP of the form:

For k ■ 1,...,K solve:

min ex

Ax > b + t. (Tk)

x integer

where t, is an integer valued vector conformable with b for k = 1,...,K.

Proof: Since all entries are integer and x is required to be integer,

then for a given 6 e [0,1] the vector b + or may be replaced by the

vector <b + er> (where <•> denotes the smallest integer greater than or

18

-- ' •■■) 1 I ■ ■ »nmtmämm, ■■imm r ■ ■ ! ■ ! n ii ii lg]miiitmimmmmm ■■ii TuiiilKi immiiil

■I'"1 '■ ' T — ""' '' ■ ■' '■■ " I'' ■ ' ' ' ■■'■"■ . .._w„ mm -, I« M i-'w^ian

•qual to *, component by component). It follows that It is sufficient

i

to solve the PILP for those 6 e [0,11 such that Gr is integer (r ? 0)

for some i c {!,.,.,m). But only a finite number of values of 6 e [0,1]

satisfy this property, since each component of r is finite. Hence the

PILP may be transformed to the problem in the theorem statement. j

The actual transformation may be done in the following way. For

each component r. ^ 0 of r write down the values of 6 c [0,1] for

i 2 Iv1! which r, is an integer. These values are 0, T—r, T r, ...» i n 1.

Place these values in a set R. . Then H = U R. is the set of values
i-1 1

of 6 for which some 6r. is an integer. Let K be the cardinality of H,

and let 6 be an element of H. Then an equivalent PILP is:

For k ■ 1,...,K solve:

min ex

Ax > b + 9, r — k
x integer .

Letting t. ■ 6 r we have the result stated in the theorem.

B. Theoretical Properties for Right Hand Side and Constraint Matrix

Parameterizations

Consider the PILP:

For k ■= 1,...,K solve:

min ex

(V (A + D,) x > b + r, k — k

x integer, j e J .

Note that this parameterization allows simultaneous changes in the

constraint matrix and the right hand side. Let F(S) be the respective

feasible regions, v(S) be the optimal solution values, and x* be an

optimal solution for (S) .

19

- • ■ "■■- ■
 —~~**i**umm**±,^— —■-' ■■..-■

mm mmm* ' "•■ ■', ■ ■ ■■■■■■IWI^M «MH^.F IM w, - -

D«finitioni A PILP is said to bs monoton« if F(S1) 2 F<S2) - '•• _?F(S
K)

Theorem 3. Let the PILP be monotone. If x* is optimal for (S) and

x* e F(sk+1)» then x* is optimal for (S. ,) also.

Proofi Since F(Sk+1) 5F(Sk), v(Sk+1) >. v(Sk). Now x* c F(£k+1) «o

v(Sk+1) - v(Sk) and x* is optimal for (Sk+1). ||

It is clear that if a PILP (or even some subset of the PILP) is

monotone, and the individual problems are solved in the order of

decreasing feasible regions, then some (S) may not have to be solved.

This occurs if xj* e F(Sk+1).

We mention in passing that a well-known PLP result for a contin-

uous parameterization of the right hand side does not hold for PILP.

Consider the PLP:

For V 6 e [0,1] solve:

(He)

mm ex
XCX

Ax > b + 9r

where X is a polyhedral containing upper and lower bounds on all

variables, this assuring a bounded feasible region. It is well-known

that the optimal solution value v(i") is piecewise linear, continuous,

and convex. Unfortunately, this does not hold for the corresponding

PILP. However, we do have the following simple result.

Consider the PILP:

For V 9 E [0,1] solve:

(He)

mm ex
XCX

Ax > b + Or

x. integer, j e J

20

M*ä
■ ■ i ■ yjM

'I IM«« l"IW»P»W^WB^^—'—" "■— ■ 11 ' "■• ^ •*i'>#wpi»miim"i

Let the PILP be monotone. That is, if 0 ^ 0 < e < 1, then

F(HÖ) 2 F(He)• Also assume that F(H) ^ (2».
1 " 2 1

Theorem 4. The optimal solution value v(Ha) i3 nondecreasing (and

hence quasiconvex) on [0,1].

Proof: Immediate. I I

I

Note that v{HQ) will be piecewise linear and convex over segments ö

of [0,1], but that» in general, discontinuities will occur at isolated

point», on [0,1] .

C. Theoretical Properties for Objective Function Parameterizations

When compared with the paucity of results for right hand side

parameterizations, the quantity of results for objective function

parameterizations may come as sane surprise. This is due to the con-

stancy of the feasible region as a function of the parameterization.

All of the results in this section deal with the behavior of the opti-

mal solution and value as a function of the parameterization.

Consider the PILP:

For V 9 e [0,1] solve:

min (c + ef)x
xeX

(v Ax > b

x. integer, j e J

where X is a compact polytope. The following result (Manne [1967] and

Noltemeier [1970]) is a direct extension of the result for the corres-

ponding PLP problem.

21

■ ■ - ■

■

PiyWW^PJIMIIlip I |l IIWHJPIMIWIHIil, »I1WI...IW wwnin^p^i .vm*' I*^IIMIII m i wiiminpi ^r— " • • mta'i ^i<m"i

■■vn.■»-!•.-.■»*■ . »...

Theorems. For (PJ V 9 c [0,1] the optimal solution value v(P) is
- o ö

piecewise linear, continuous, and concave.

Proof; Let F ■ {x|x e X, Ax ^ b, and x integer, j e j). Replace F by

its convex hull, Co(F). It is well-known that this can be accomplished

by adding a finite number of linear constraints to the problem. The

convex hull has the property that each of it-i extreme points corre-

sponds to a feasible solution of F. But, for V 6 c [0,1]:

min (c + 9f)x is just a PLP. Then since the optimal solution
xcCo(F)
value of a PLP over 6 is piecewise linear, continuous, and concave, it

must also be such for the PILP. | |

This result, when coupled with the next theorem, reduces the

continuum of problems (Pe) V 9 e [0,1] to a finite number of problems

for which optimal solutions must be found.

Theorem 6. For (PJ a finite set of solutions can be constructed, each _—_____ y

member of which is optimal over some 6-range [a,b], where 0 <^ a < b <^ 1.

The union of these ranges is [0,1). (There may exist solutions which are

optimal only at a single value of 6, but in this case there must always

be an alternative optimum which remains optimal over a nondegenerate

interval including this value.)

Proof; Follows from Theorem 5 and from the fact that there are a finite

number of break-points for v(P) V 9 e [0,1]. See figure below. | |
9

Note that in the fiaure each straight line corresponds to a feasi-

ble solution for (P.). The heavy line denotes v{Pe).

22

rn...^ ■

PJWPIil p inn i m imnnpB —--T^T^- "^'«^I'PH, JW ' I »»Pi ■«> ■WPiW|l-»l|^pTH(PW»»TVll'"WW"wn--,T-

v(Pe)

e

The next lemma states a well-known monotonicity property of the two

portions of the objective function of (PQ) , namely ex and fx. This

property will enable us to make a statement (Theorem 7) concerning the

behavior of certain variables in an optimal solution of (PJ as 6 is

varied. Let x*{9) he an optimal solution for (P-) .

Lemma 1. If 0 £ 0. < 6 , then cx*(e) <_ cx*(e2) and fxMe.) >_ fx*(e2) .

Proof; Without loss of generality, take 0=0 and 0 ■ 1 since c and f

are arbitrary. Clearly cx*(0) _< cx*(0) and (c + 0 f)x*(0) <_

(c + 02f)x*(01) _< cx*(02) + 02fx*(01). Therefore fx*(02) <_fx*(01). ||

Our next result utilizes Theorem 5 and Lenma 1 in order to show

that it is possible to reduce the number of variables in (P) for cer-
9

tain values of 0. This is done by fixing (pegging) variables to

specific values.

Suppose (P) and (P) have been solved to optimality, and a piece-

wise linear, concave upper bound function Ub(0) has been found.

Note that UB(0) ■ V<PJ ' m^ " v(P), and that UB(0) will have at

least two "pieces", one due to x*(0) and othe other due to x*(l),

assuming cx*(0) 3^ cx*(l). There may be more than two "pieces" due to

23

... -. mm

mmm**mmm*m' "»»»•^»»"»H»«"!!! ■ "'•im" «' < i I'm (im i- ■.■ tw'•'•*'•'•""• '""' "»'i —

feasible (but not optimal) solutions actually found in the process of

solving (P0) and (P^ . See figure below.

((*-f)x*(0)

v(Pe)
cx*(l)

v(P1)-(c+f)x*(l)

v(P0)-cx*(0)

feasible but not
optimal solution
for (P0)

Further, suppose that x. is a 0-1 integer variable and let a = 0 or 1,
o

Theorem 7. if x*(0) ■ a, g is any underestimate of v(P |x. = 1 - a)
1 01 1

such that VvP0) < g» and h is einy underestimate of v(P |x. « 1 - a),

. hen x jtiay be pegged to the value a for those values of 6 for which
,'o ,

q + (h - q)e > UBO) .

Pioc f. The linear function g + (h - g) 9 is a lower bound on

v(P |x. = 1 - a) by concavity. jj
o

The figure below may help in understanding this result. In this case

x. may be pegged to the value a for V e e [0,9,] U [9 ,1]. We note

that g and h may be found by utilitzing "penalties" which are calcu-

lated during the solution process for (P) and (P) .

v(P0)-UB(0)

v(P1)-UB(l)
g+(h-g)9

24

-■■-•■-

'"I'll" '■ ^H^"'- " "■»'IT"' "I Ill^.< ■■■ I .l» ..„.^Ii,,»! , ^IPl.,1^ „.-^r, IMI | , l»JIIJ»...

snanM

Of course it follovs that If an underestimate s of v(P*|x. - 1 - a) for

some e c (0,1) is known which is greater than the value g -f (h - g)e#

then the piecewise linear, convex function connecting the points (g,0),

(s,e), and (h,l) may be used as em improved underestimate for

v(P |x. - 1 - a) with attendant improvements in pegging x. to the value

a over segments of [0,1].

The next result gives conditions under which an optimal solution

of (PA) may be deduced to be optimal over some segment of [0,1]. This
6

result also enables the analyst to choose judiciously the next value

of 6 at which to solve (PÄ).
e

Let UB(e) be a piecewise linear, concave upper bound function of

v(P) where UB(0) - v(pn) a"«3 UB(1) ■ vCP.). Let the straight lines

AC and BC make up the function UB(e) (see figure below) .

Theorem 8. a) If v(P) ■ v , then the lines AC and BC coincide with
 ec c
v(PQ) V 6 e [0,1]. b) If v(P) - v . then the line AB coincides with

9 0c D

v(Pe) V 6 e [0,1]

Proof; a) The lints AC and BC are upper bounds for v(P0). Since

UB(0) - v(P0), UB(1) » vCP^^), and UB(ec) = v(P), and since v(Pe) is

piecewise linear, and concave, it is clear that AC and BC coincide

with v{P0) V 6 e [0,1]. b) Similarly, since UB(0) = v(PJ, UB(1) = v(P,), o 0 1

and UB(e) ■ v(P), line AB achieves the minimum tor a piecewise
c ec

linear, and concave function, and hence AB coincides with v(p). ! I
9 '

25

— ^
■--^ ■*

v(P1)-UB(l) 4^.

v(P)-ÜB(0)

Basically, the theorem states that if v(p) ^ v or v(P) ■ v then
ec C ec D'

{PQ) is solved for V 0 e [0,1].

Remark: a) If v(P) = v (see figure below) ,then AC coincides with eE E

the function v(p) v 0 e [0,9 J. b) If v(P) - v^,, then AB coincides
o C öE F

with v(P) v 9 e [0,1].

V(P-)-UB(1) -y^rL --rrrr=:

v(P0)«UB(oT

Of course an analogous result holds for 0 e (0 ,1).
E C

These results for deducing optimality over a range of 9 are very

powerful, and may enable a substantial reduction to be made in

computation time. They allow the analyst to solve (P) at selected
9

points only, and still be able to deduce optimality over the continuum

[0,1]. It is clear that having solved (P) and (P) , a likely choice of

the next value of 0 at which to solve (P.) is 0. This is because if
9 C

V(P9) " VC 0r V(P9) * VD' the entire Problem for V e G [0,1] is solved.
C C

26

—■•■'-■■*■ ' ■--

rtmrn*

' iimi .iiiiiM'H'iu 11."; ' '■ ■ ■■—- »ii. i im ,II).I^)WI.-V ii

umi j ii■ «-mimil'I—mt i 'iiyt<t"i"—^"—Wj**"*^-''

N«xt we consider the sensitivity of an optimal ILP solution to

special changes in the cost coefficients. This comes within the realm

of PILP, since by our definition a PILP is a collection of closely

related ILPs. Consider the ILPs:

min ex min c'x

(P) Ax ^ b (P') Ax > b

x - 0,1 V j e J

th

x - 0,1 V j e J

where c* =» c except in the k component. Let x be an optimal solution

to (P) . Piper and Zoltners [1973a! state a weaker version of the

following result.

Thoorem S. For nome k e J, suppose x. ■ 1. Then x is optimal in (P*)

if and only if c^ <_ ck + v(p|xk = 0) - v(P).

Proof; Since x is feasible in (P1), it is optimal in {?') if and only

if c'x <_ viV), But v(T?') - min MP" |x - 0) , v(P, |x - 1)> where

v(p,|x ■ 0) - v(p|x, * 0) and vCP'jx^ " 1) = c'x. So x is optimal in

(P') if and only if c'x £ vCPJx. * 0) where c'x = v(P) " c
k

+ cü- i |

Corollary. For some k e J suppose x ■ 0. Then x is optimal in (P1)

if and only if c' ^ c - v(p|x = 1) + v(P).

Mote that in an application one may not know the value for

v(p|x. * 0) in Theorem 9, but through the use of "penalties" one may

calculate an underestimate of this value which can be used in the

Theorem. We observe that the ranges for changing tht cost coefficients

are valid only for one-at-a-time changes. However, by restricting this

range, simultaneous changes can be made in cost coefficients. Let

27

"«■«■

P^^"^^^WPIWP'^^^"'"iWWi i11 ""I WPII ii iii!iiiii«piP!fnn»irr ■~^" •" mwiv F»1"«"»";11 ii T»^*

(P') - (P|c^ < ck and c^ - c^), (P") - (p|c^ - ck and c' < c^), and

(P"<) £ (P|C^ <_ ck and c^ < cA)

Theorem 10. For some k, I c J suppose x - x = 1. Then x is optimal

in (P'") if c^ < ck and c' <_ c£.

Proof; By Theorem 9, x remains optimal in (P1) and (P11). We will

show that v{P" ' |xk = x - 1) _< min {v(P," |x - x • 0) # v^"* [x = 1,

x - 0), v(P",|x = 0,x = 1)} . First, vlP'"^ 1) <

v(P|x^ = x « 1) £v(p|x = x = 0) = vCP^'lx = x «0). Second,

v^'" |x ■ x = 1) Jl vCP" |x = x = 1) 1 v{P, |x^ = 1, x - 0) =

v(P" ' |x = 1, x = 0) . Third, vCP*" |x = x = 1) <_ v{?' ' k = x = 1)

< v(P" jxj^ = 0, x£ = 1) = v(P",|xk = 0, x£ = 1). ||

Defining (Q'1') = (PJc* >^ c and c' >_ c) we have:
it ~— Iv X. 'm~' Xf

Corollary. For some k, £ e J, suppose x = x. =0. Then x is optimal

in (Q'") if c^ >_ ck and c^ > c^.

Note the difference in allowable rcinges in Theorems 9 and 10. in

Theorem 9, the cost coefficient of a variable may be increased by a

certain amount or decreased by an arbitrary amount. In Theorem 10,

however, the cost coefficients may only be decreased arbitrarily. This

is a direct result of the fact that v(p|x - 0) may vary, if say, c.

is changed as is done in Theorem 10. Since v(p|x = 0) no longer

remains constant, it cannot be used as part of the bound. Finally, we

note that by combining Theorem 10 and its Corollary, we may simultaneously

decrease cost coefficients c such that x = 1, and increase cost

coefficients c such that x = 0.

28

■■■ i ■ iMjaa—tanMa,,^
ill iinHiiimifrniiiiTiiiiinri mammnaMtymm^^^^

»^•■■■••^^^^^ • "•'

This completes the chapter on characteristics and properties of

particular paraneterlzations. The utilization of the results which

have been given depends almost entirely on the type of parameterization

in the PILP. The next chapter details techniques for improving

algorithmic efficiency which depend on the specific problem class (e.g.,

capital budgeting, facility location, etc.) being solved.

29

j - ■ .^^MtMlMafM—^—

mmm^ im'i>'H*^^m*^^mt**~-" II^I —r,~T~'■ —•*• ■ ■».—^,. ^,,.—,

•

III. PROBLEM DEPENDENT TECHNIQUES FOR IMPROVING ALGORITHMIC EFFICIENCY

Given a PILP made up of ILPs belonging to a special problem class,

what methods are available which would improve algorithmic efficiency?

Four major techniques are problem reduction, feasibility recovery,

.ng problem reoptimization, and wide range bounding.

Problem reduction refers to preliminary analysis performed on a

problem which may result in variables being fixed at certain values, or

additional constraints or cuts being added which will tighten the

initial (and succeeding) relaxations. Set partitioning problems

(Marsten [1971] and Garfinkel and Nemhauser [1969]) are prime examples

of instances where logical reduction is used to reduce the size of the

problem. Basically, logical tests are used to conclude that certain

variables must take on specific values (pegging) in an optimal solution,

v and that certain constraints can be eliminated. Hammer and Nguyen

[1972] have used logical tests to generate precedence relations for

general 0-1 IIJ>s. Examples of such relations are x. <_ x or

X. + x> £ 1. However, for many types of ILPs such analysis is not

worth the effort expended. In other words, the ILP can be solved

faster without preliminary analysis. In PILP, on the other hand, if

a single preliminary analysis can be done for many or all of the

individual problems in the PILP with little or no modification, then

the analysis may become more attractive because the extra work can be

amortized over the whole set of ILPs in the PILP.

Since upper bounds on the optimal solution value are used for

fathoming, generating good upper bounds is of primary importance in

any branch and bound algorithm. Feasibility recovery techniques are

30

■—ut^MmiiiMBW ti.in .->. -■■ ^.-..J. -J-.--^-.............. ,■.—... . „... ,,,,,, , „i,,,,,,, I, ,^^^^^^^^^,^^
•■^-"■■■"■-•-

K» «MM^^RM O^i^ P'W ■ " ' '• ■ i »™rr «■

W««» ' MWH—iWV. •■*

•■.

used to generate these upper bounds. The technique involves taking an

optimal or even just a feasible solution to one problem and modifying it

in such a way that it becomes feasible in another problem in the PILP.

A simple example is the mixed integer linear program where the right

hand side is varied. Given the optimal solution for the original

problem, fix the values of the integer variables, and then reoptimize

the continuous variables using the new right hand side. If the

resulting solution is feasible, than an upper bound on the revised

problem has been found.

Bounding problem reoptimization is another promising technique.

Heoptimization in ILP algorithms, which utilitze LP as the primary

relaxation, is often used to great advantage. Generally, an advanced

basis is used from the preceding candidate problem as a starting basis

for the current candidate problem. Reoptimization then proceeds using

the dual simplex method. In PILP this approach would also be used,

but there is yet another application. By referring to the rudimentary

branch and bound algorithm in chapter I, we see that it is possible

to choose a subset S of candidate problems from the candidate list.

If these candidate problems are closely related, then a reoptimization

technique would probably be an efficient method for generating an

optimal solution to the relaxation for each member of the set S. Such

a procedure could result in smaller storage requirements as well as

reduced computation time.

A fourth technique we dub wide range bounding. Generally this

technique is based on the formal Lagrangean dual, and depends on find-

ing feasible dual solutions which serve as valid bounds on the optimal

values of the primal problems in the PILP. Oftentimes, dual feasible

31

 ■ i

mmm ■PP^WM'S'-^i^PPWW w u» -"•-^

solutions are inexpensive to calculate, and at the same time may be

surprisingly good approximations to the optimal value of the primal

relaxation. Thus, these methods may be used in place of (or in con-

junction with) the reoptimization techniques in the previous paragraph.

The tradeoff involved is that computation time is reduced at a cost of

producing a weaker (dual) bound. Examples of wide range bounding

applied to the continuous objective function and the continuous right

hand side parameterizätions are given below.

Consider the problem:

For V 9 e [0,1] solve:

(V

min (c + Of)x
xeX

Ax > b

x. integer, j e j

where X is a compact polytope.

Suppose that a set of dual multipliers X ^ 0 for the Ax ^ b

constraints have been generated for some 9 E 10,1]. We know from

duality theory that: v(P') >_ v(D') = max [inf (c + 9f)x + X (b - Ax)]
6' 6 X>_ 0 xeX

>_ inf (c + 9f)x + X(b - Ax). Also it follows for any other set of
xeX . .

dual multipliers X >_ 0 that: v(P) ^ v(W) ■ max {inf (c +ef)x +
9

XEX

X(b - Ax) ; inf (c +9f)x + X(b - Ax)} . Now since v(6;X) =
xeX

inf (c + 9f)x + X (b - Ax) is a piecewise linear, concave function of
xeX
6 (for fixed X), and since v(D) is also a piecewise linear, concave

6

function of 9, we have the situation shown in the figure below.

32

... ■:. * '•■■-,„ , „ r* > «.».limi i ■ t^gg^Mg^igmmum^^^^ J

Wy^^^^i^ajiiiii.i^l i ii, i li mil fl II.,I i ill ntnnm "*>*' ■' "^tm"-w^\S}i\mw^m\ W'^w f^nw^ltmvn iNinwi.jj.iiiiih.ippif.» T-"—~-r- ,-.r . -^^

^«, .«.nltM^WIKfVI

v(.e)
improvements In dual bound

to cc

:J
due to concavity of v(Dfl)

Since v(P.) > v(D) > v(llö) and since v(DQ) is piecewise linear and
6 — 6 — 9 o

concave, we may improve v(W) by filling in the non-concave portions
o

of v(W) as shown by the dotted lines in the figure. Of course this
6

analysis holds for any number of choices of X >_ 0 for use in the

calculation of v(W). In essence we are only applying the fact that
9

v(D) must be concave.
6

Next we consider the problem:

For V 9 c [0,1] solve:

(He)

mm ex
xex

Ax > b + Sr

x integer, j e J

where X is a compact polytope.

Suppose that we generate two sets of dual multipliers X >_ 0 and

X ^ 0 for (H~). Then v(H) >_ v(G) = JUX {X(b + 9r) + inf (c - XA)x ;
9' 6 e

xeX
X(b + 9r) + inf (c - XA)x} . Note the interesting property that the

xeX
"inf" problems do not depend on 0. This suggests that the computa-

tional burden of finding a dual bound for (H) V 6 e [0,11 would be
9

very cheap. Still another dual bound may be obtained from the LP

tableau of (H~) (if LP is used as the primary relaxation). Suppose
9

that we have an optimal tableau for (H~) . The primal solution values
9

33

iinnifiiiMM—faMgitmrtiiHi! , H
..*»«,

'/^m&*mmm iuppuwwpBW miN*ili|l"n"i<>|i|'! ^pnm^Kantn

of the basic variables are represented in the tableau by B (b + Or) .

Now for some other value of 6, this basis may be infeasible. But if

the dual simplex method is used to regain primal feasibility, we may

generate a dual bound for all 6 at each dual simplex iteration, since

dual feasibility is retained in the dual simplex algorithm.

34

■

mnpi IIW^lll.» I lllill»! llllHlllll.lp.pin i i ...,|,l|l um i„ ..pill,.,.! „p,,.,.,.,..,,,^.,, -

<r,*/.f,^r.

IV. SCHEDULING SOLUTION PRIORITIES FOR PILPS

In solving the PILP an important decision which must be made is

the establishment of solution priorities. Specifically, should equal

effort be given to solving all of the problems in tne PILP at all times,

or should some priority scheme be initiated whereby one problem or

some subset of problems is solved to optimality, and then another

subset is solved? The priority scheme to be devised should take into

account the type of parameterization and its attendant characteristics

and properties (chapter II) , problem class dependent techniques (chapter

III) , as well as aspects identified in the first part of this chapter.

An important factor which plays an intimate role in the formulation

of PILP branch and bound algorithms is whether the solution of one prob-

lem is likely to furnish information useful for solving other problems

in the PILP. Three aspects of this factor will be outlined in this

chapter. The first aspect is the tightness of the primary relaxation as

a function of the problem set index. The second is the behavior of in-

dividual integer variables in an optimal solution as the problem set

index varies. The third is the question of whether a branch and bound

tree for one problem in the PILP is a "good" branch and bound tree for

another problem in the PILP.

The gap between the optimal integer completion value and the opti-

mal relaxation value at a given node in a branch and bound tree is a

measure of the tightness of a relaxation. This gap, of course, is de-

pendent on the problem set index. The behavior of the gap function is

an important factor in deciding on the priority for solution of the ILPs

making up the PII.r, since it would seem likely that problems with smaller

35

- -
■ - ■ l<Mat^H1HHaa

-■■-" ■ ..--..-

-_ „ , _ (.—

,t,tm*, .r.

gaps are easier to solve them those with large gaps. This will become

clearer later in the chapter when various solution priorities are out-

lined. In addition it may be the case that solving a "small gap' prob-

lem first may enable good feasible solutions for closely related prob-

lems to be generated by feasibility recovery techniques.

Behavior of individual integer variables in an optimal solution as

the problem set index varies is also an important consideration.

Intuitively we ask the following questions: a) do the optimal solutions

remain relatively stable as the problem set index varies? b) do

"important" variables tend to remain "important" as the problem set

index varies? Both questions can be clarified by appealing to the

notion of "integer A's." For a 0-1 integer variable, x., define

A(j) - v(p|x. ■ 1) - v(p|x. ■ 0). Intuitively A(j) may be thought of

as an indicator of the "importance" of x. in an optimal solution of (P) .

If |A(j) | is small, then the value of x. does not have much effect on

the solution value. It follows that in a branch and bound process,

important variables should be the variables on which branching is done

initially. Clearly, then question b) would seem to be vital, for it is

directly related to the third factor which we shall now examine.

The question of "good" branch and bound trees for problems in a

PILP can best be examined by considerinq the notion of "scratch tree"

dynamics. Given a PILP indexed by k, and given a traditional ILP

algorithm, a scratch tree is defined to be the branch and bound tree

resulting from applying the ILP algorithm to, say, the k problem in

the PILP from scratch without the benefit of any prior information.

Scratch tree dynamics is the study of how the scratch trees change as

the problem set index, k, varies. If the scratch trees remain

36

_iaMiMaaaaiMia

reasonably stable as a function of the problem set index, thin it is

likely that the scratch tree for the k problem will be a "good" ini-

tial «r oatation for the other problems. We observe that a scratch tn

consists of two types of nodes — fathomed nodes and unfathomed nodes.

If a node is unfathomed for one problem, it is reasonable to presume

that the corresponding node will be unfathomed for a closely related

problem (assuming that the same type of bounding relaxation is used).

While this may not always be so, it does afford a rationale for inspect-

ing only the fathomed nodes of the original problem. Furthermore, since

the fathomed nodes form a partition of the feasible solutions of the

problem, no optimal solutions can be missed by using this set of nodes

as an initial candidate list (initial separation) for another problem in

the PILP. Thus we may choose to use the set of fathomed nodes as an

initial separation for another problem in the PILP. This is the tack

used by Roodman [1972,1973] in his study on ILP sensitivity.

Armed with a better understanding of the factors which are of

major consequence in the formulation of PILP branch and bound algorithms,

we now consider the scheduling of solution priorities for individual

problems in a PILP. There are at least three solution priorities for a

PILP branch and bound algorithm.

The first approach is purely serial. One problem in the PILP is

solved to optimality, and then using the information gleaned from this

problem the next problem is solved to optimality. This procedure

continues until all problems have been solved. Information which might

be of use for future problems includes: choice of an initial separation,

choice of branching rules and their operating parameters, knowledge of

a good upper bound, relative emphasis placed on fathoming and pegging

37

- — ■ -MMMMMMMH^WMi

< ^»HV'

machinery» choice of quitting threshold, and avoidance of nodes which

are likely to be unfathomable.

A second approach is lexicographically serial. Let the problem

set be indexed by k. The procedure begins as though (P) is the

only problem to be solved. Branching, pegging, and fathoming machinery

aie devoted wholly to (P,) until at some node (CP.) is fathomed. 1 i, R.

Then at this node the relaxation for (CP) is solved (hopefully
^ ,R,

by reoptimizing the (CP) relaxation at the node) . If (CP.) is
1,K. ^,K.

fathomed, the (CP-) relaxation is solved to optimality, etc. If
3, R.

1

(CP_) is not fathomed, then branching continues from that node with
2 ,R,

the branching, pegging, and fathoming machinery devoted wholly to (P) .

When a (CP) is finally fathomed at a node, the (CP) relaxation

is solved to optimality at that node. The process continues in this

manner and backtracking in the branch and bound tree occurs naturally

with each unfathomed node being tagged with the index of the problem

to which the branching, pegging, and fathoming machinery will be

initially devoted.

A purely parallel approach is another possibility. At each node

the relaxations for (CP _), (CP),..., (CP) are solved. If 1, R. 2 , R. K, R.

some problems are fathomed, they are dropped from further consideration

at any descendant of the node. When all problems which remain uuder

consideration at a node are fathomed, backtracking from that node

occurs.

The parallel approach, then, relies on the assumption that solving

a series of closely related problems at a given node can be accomplished

relatively efficiently. The purely serial approach on the other hand

38

■ •"*

I

!

relies on the assumption that information gained from solving one

member of the PILP will be helpful in jolving another member of the

PILP. The lexicographically serial method is one possible compromise

between the two approaches.

At this point we present an analysis which under certain assump-

tions establishes a bound on the savings in computation time which

can be achieved by the serial and lexicographic serial methods, over,

say, the traditional approach where each problem in the PILP is solved

from scratch. We assume that LP optimizations (or indeed any other

optimizations) require the same amount of computation time at all nodes

in the branch and bound tree. While this is not generally the case, it

does allow for a simpler analysis. The assumption may be dropped at

the cost of complicating the conclusions somewhat.

Consider an arbitrary branch and bound tree with the set of

fathomed nodes denoted by N.

Remark. If a branch and bound tree has |N| fathomed nodes, then there

are |N|-1 unfathomed nodes in the tree.

Proof; By construction using the fact that 2 +2 +...+2' ' =2' -!• | |

Thus we see that the number of fathomed nodes is approximately 50% of

the total number of nodes investigated in a branch and bound procedure.

If the serial method is used for a PILP which utilizes the set of

fathomed nodes as an initial separation, then the maximum savings in

the number of nodes investigated is 50% over an approach where each

problem is solved from scratch. This holds for the lexicographically

serial method as well. Thus there is an upper bound on the savings

39

yauuyatMHHIMiaMiM ■ ■ '-■"-'—»

I

which can b« realized using the serial or lexicographic serial

approaches instead of the traditional approach.

40

«a..

 ■ . - -^m^nmamm^mm*. - -■ --^

V. THE PAHAMETRIC 0-1 KNAPSACK PROBLEM

In this chapter we consider the parametric 0-1 knapsack problem.

Three specific parameterizations will be examined:

1) For k ■ 1,...,K solve:

max ex
(Pk) x-0,1

wx < B - t,
— k

2) For k = 1,...,K solve:

max (c + f,)x
(R) X=0,1
K wx £ B

3) For v 9 e [0,1] solve:

max (c + ef)x
(Q) X=0,1

0 wx <_ B

where c, f, f , w are conformable n-vectors and B, t are scalars.

Without loss of generality we assume throughout this chapter that

c, w > 0, B > 0, and 0 = t. < t_ < ... < t. < B.

The 0-1 knapsack is a very simple model. One important applica-

tion is the capital budgeting problem with one budget constraint.

Problem formulations 1) , 2) , and 3) allow for flexibility in the budget,

the cost coefficients, and in the maximizing criteria respectively. Per-

haps a more important use of the 0-1 knapsack problem is as a subprob-

lem fir a larger model. One simple example is a general capital budget-

ing problem (with m budget constraints). By Lagrangeanizing all the

budget constraints but one into the objective function, a 0-1 knap-

sack problem results. Under certain conditions this relaxation of the

original problem can be shown to be at least as strong a relaxation as

the traditional LP relaxation.

41

I Ml-*- ' ' ^-- .-■■- ■-. - - ^^^■^^^M^M-Kji^^M^fc—^— _ - ■ ■ .-- - - ■- -^ - .

The outline for this chapter is as follows. First, an efficient

algorithm for the 0-1 knapsack problem will be stated. Then algorithms

for each type of parameterization will be outlined, computational re-

sults will be cited, and conclusions will be drawn concerning the most

effective methods for solving each parametric 0-1 knapsack.

A. An Algorithm for the 0-1 Knapsack Problem

Consider the problem:

(P)

max ex
x-0,1

wx < B .

By capitalizing on the simplicity of this problem, it is possible to

achieve substantial savings in computation time over, say, a general

0-1 ILP code. There are two properties of (P) which may be exploited

successfully. First we assume that the variables have been ordered by
ci co c

decreasing "bang-for-buck" ratios so that — > — > ... > —. With w — w ■- — w 12 n
this ordering the solution to the linear program (F) (replacing x = 0,1

by 0 £ x <^ 1) becomes analytic. That is, variables with the largest

bang-for-buck are placed in the knapsack at their upper bounds of 1

until no more room remains in the knapsack. At this point the variable

which could not fit is placed in ths knapsack at a fractional level

such that the knapsack is filled. It is clear that all variables, with

the possible exception of one, have value 0 or 1 in an optimal solution

to (P). It follows that by setting the fractional variable to 0, feas-

ibility in (P) is achieved, so that a lower bound on v(P) is readily

available. It is these two properties (an analytic solution to (P) and

r simple feasible solution generator) which are exploited in the algo-

rithm below.

42

■ -- - - in mmm^a

I

Korsh and Ingaragiola (KI) [1973] have developed an algorithm for

0-1 knapsacks which has proved to be very effective in reducing compu-

tation times. Basically they employ an inexpensive LP test which, if

passed, allows a variable to be pegged to 0 or 1 at the root (initial)

node of a branch and bound tree. Computational results show that up-

wards of 80% of the variables may be pegged to 0 or 1. The reason for

such powerful pegging is that the gap between v(P) and the lower bound
|

found by the feasible solution generator is generally small. Once the
I

pegging tests are completed, the "reduced" knapsack problem consisting

of the unpegged variables is solved by any available knapsack algorithm.

Since computation time for the pegging test is linearly proportional to

the number of variables, and a branch and bound approach is generally

exponentially proportional, such a de/Ice would appear to be quite at-

tractive. This 13 indeed true, since the KI approach reduced computa-

tion times by a factor of 5 for 50 variable problems and Ly over a fac-

tor of 30 for 1000 variable problems.

Dembo [1974] has noted that the concept of Lagrangean relaxation
I

may be used in carrying out the KI pegging tests. While his test is
-

slightly weaker than the KI test, the confutation time required for the
j

pegging phase only is about ?/3 less than for the KI method.

The branch and bound algorithm used by KI was the Greenberg and

Hegerich (GH) [1970] algorithm which until recently was the most effi-

cient knapsack algorithm However, Horowitz and Sahni (HS) [1974] have

developed a branch and bound algorithm which dominates the GH algorithm.

We present a variant of the HS algorithm which has decreased computa-

tion times (in the branch and bound phase) by approximately 1/3 over

the original HS algorithm.

43

..-■-. ,,^ «a mi-^j^a^ayaüitamitti

. ,, p ».p. »i. ii,.- i , <iu| - -■ — — w w* > " , ■ i|*^ . ■■ ■ ■ !■■■■ ■ "- "•" " I IIP I ' Piwu^fii III im

«Wt** Äi**^ "f«

In order to make the presentation of the algorithm clear, we shall

appeal to the general branch and bound framework given in Geoffrion and

Marsten (1972J. An explanation of the finer points of the algorithm

will be deferred until later.

Algorithm At
c c 1 2 1. Order the variables by decreasing bang-for-buck so that — >_ — 2L

c wl w2
... > —. Set 1, ■ I • 0.

- w 10^
— _

2. Solve (P) getting an optimal solution x and an optimal dual multi-

plier X associated with the budget constraint. If x is feasible

in (P), stop: the solution is optimal. Otherwise denote the

index of the fractional variable by r.

3. Find a lower bound z* for v(P) by setting x = 0 in the solution

to (P). Let x* = x.

4. Try to improve z* by certain heuristics.

5. For y i » l,...,r-l, if v{P) - c. + Xw. <_ z*, set I = I U {i}

(x. is pegged to 1).

6. For v i = r+l,...,n, if v(P) + c. - Xw. £ z*, set I = I U {i}

(x. is pegged to 0).

7. Solve the remaining knapsack problem:

(R) Max I c. + I ex.

I w.x. < B - j; w.

^Vo 1£ll

by using the branch and bound procedure in steps 8-18.

8. Initialize the candidate list to consist of (R) and let the incum-

bent value be z*.

9. If the candidate list is empty, stop: x* is an optimal solution

44

IIIIIMH—iMlmnii

CO (P) and z* is the optimal value.

10. Select a candidate problem (CP) from the candidate list by a LIFO

rule.

11. Solve (CP) getting an optimal solution x.

12. If (CP) is infeasible, go to 9.

13. If v(CP) <_ z*, go to 9.

14. If an optimal solution of (CP) is feasible in (CP) , go to 18.

15. Choose that x. which is the free variable with the largest bang-

for-buck.

16. If w. < B - Z w, , then add only (CPlx, ■ 0) to the candi-
1 — . i , 1 J i:x. set to 1

date list, add the restriction x. = 1 to (CP), and go to 15.

I
Otherwise go to 17

17. If w, > B - E Wj^ , add the restriction x. * 0 to (CP) ,
3 i:xi set to 1 3

choose that x which is the free variable with the largest bang-

for-buck, and return to the beginning of this step. Otherwise go

to 11.

18. A feasible solution to (P) has been found. Set z* » v(CP), x* = x,

and go to 9.

In step 2 an optimal dual multiplier X for (P) can be shown to be
c

equal to —. In step 4 two heuristics are used in an attempt to im-
r

prove the value of z*. First, set x = x and x =0. The solution x

then has a slack in the constraint with value s = x -w . Now, for r r

i = r+l,...,n the following is done: if w, ^ s, set x, = 1 and s -

s - w. . If s > 0, repeat this step for i = i + l. Ifcx>z*, set

z* ■ ex and x* = x. Basically, this heuristic puts extra variables in

the knapsack until no more variables fit. The second heuristic begins

45

-—"*—-"-'- -■■■ - ■■•'■ - -- ^^Mtmutmmm.mti^^ ■ ■■ ■-■■■.: ■-■.J.^-n:^....-^

^mm "i ■ " ■ •»■«-•^^■p^» »PP^'" ■" " "K'«'"" ■ ■' -^■T^-—»-™-"—TT——r ,™' """k

tvmmtamtmms;

toy setting x - x and x ■ 1. This overfills the kuapscck by s -

(1-x) «w . Then for i » r-l>r-2,... ,1 the following is dor.e: set

x. - 0, s ■ s - w. , and if s > 0 repeat this step for i ■ i - 1. When

s £ 0, set s - -s and return to the test loop in the first heuristic.

Thus this heuristic begins by overfilling the knapsack, and then vari-

ables are withdrawn until feasibility is obtained. At this point the

test loop in the first heuristic is employed. The pegging tests in

steps 5 and 6 utilize the notion of Lagrangean relaxation (LGR) . Con-

sider the relaxation:

(MR^ max ex + A{B - wx) .
x-0,1

It is easily seen (Geoffrion [1973]) that V(LGRT-) = v(P) where X ii an

optimal dual multiplier for (P), and that the solution to (LGR—) is

analytic. That is,

1 if c. - Xw. > 0
Xi " i '0 if c. - Xw. < 0

i i —

Thus we have V(LGRT-|X. » 1) ■ v(P) + c. - Xw. if x. = 0, and
Al 111

v{LGR-|x. - 0) » v(P) - c. + Xw. if x. - 1. Since v(LGR,) < v(P) v X' i ill X —

X >^ 0, it follows that the pegging tests are valid. Steps 5 and 6 may

be enhanced by adding the following tests if the LGR test fails:

5b. If v(p|x. - 0) <_ z*, then set 1=1 U {i}.

6b. If v(p|x. = 1) <. z*, then set I = I U {i}.

The branch and bound algorithm of steps 8-18 is straightforward,

but a few comments may make it clearer. In step 10 a LIFO selection

rule is used, thus guaranteeing linear storage and minimal setup costs

in a computer implementation. Step 14 is an addition to the HS imple-

mentation which recognizes that if a relaxation has an optimal integer

46

H^flk
w-- ritfUIHiMMMtfltflUilMM -

■ " "'-- ■ ' — -^ ' I lulu i.w»..ii.iii.^iiiu»Wii,^, , um,!,,,,,.,,., „ - ^^

MBHmMMMM •>•■••. .■—« -« ■ •-■

feasible solution, then the current candidate problem may be fathomed.

The branching strategy in steps 15-17 is done as follows. The most

attractive free variable (in terms of largest bang-for-buck) is chosen

as the branch variable. However, since this variable has value 1 in

(CP) , we have v(cp|x. « 1) ■ v(CP) . Thus, no reoptimization is re-

quired, and the next branch variable may be chosen. This continues

until the next variable chosen, x., cannot fit in the knapsack at a

level of 1. But this implies that x. may be pegged to 0 due to feasi-

bility considerations. Pegging variables to 0 continues until no

longer possible. At this point control is returned to step 11, and the

relaxation of the current candidate problem is solved. In actuality, a

group of variables (contiguous by index) are committed to 1 until this

is no longer possible, and then a group of variables (contiguous by

index) are pegged to 0 until this is no longer possible. This allows

the LP in step 11 to be bypassed after most branching operations, which

in turn reduces computation time measurably. This is seen in Table A

where the HS algorithm (as coded by HS) is compared to steps 8-18 of

Algorithm A. Note that steps 1-7 were omitted in these runs. Both

algorithms were coded in FORTRAN H and run on an IBM 360/91. Random c.
x

i

and w. were generated from a uniform distribution, U [10,100] , and B was
n

set to .5'{ I w.). Results show that steps 8-18 of Algorithm A ro-
i=l 1

duced computation time by 33% when comparcid with the HS algorithm.

Results for all of Algorithm A (steps 1-18) are given in Table B.

These results clearly dominate KI's results, even when machine differ-

ences are taken into account. Table C shows this dominance. The trend,

as the number of variables increases, definitely is in favor of Algo-

rithm A.

47

— - ■ ■ MMtaMüKJH

mrm " "' '""i***^^mmmmmi*mim' HI i ■ ■ •> ■ —' "•■""■ — ""i'1 i "» i' n

Quadrupling the number of variables increases computation time by

a factor of 1.7, while for KI this factor is 4.2. Finally, we mention

that inclusion of steps 5b and 6b in Algorithm A was ineffective, and

in fact increased computation times slightly.

B. The 0-1 Knapsack Problem with a Finite Number of Right Hand aides

In this section we consider problem 1). It is well known that

optimal solutions for all right hand sides from 1,2,...,B are available

as a by-product if (P) is solved via dynamic programming (DP) . However,

with the rocnnt developments in knapsack branch and bound technology as

expounded upon in section A, we shall see that for problems with a rea-

sonable number of right hand sides, the branch and bound approach is

more efficient bot'i in computation time and in storage requirements.

Prom a practical point of view we note that if the various right

hand sides to be considered in 1) cover a large range, then within that

range it is possible to find optimal integer solutions for certain

budgets by simply filling the knapsack using the bang-for-buck ordering.

These budgets correspond precisely to thoje right hand sides within the

reuige which have a naturally integer solution, so that v(P) = v(P) .

Occasionally this might be all that is needed, and of course such an

analysis may be done by hand calculation.

As an initial step in developing an algorithm for 1) , we investi-

gate the problem dependent techniques of chapter III. Then factors

affecting the scheduling of solution priorities of chapter IV will be

considered, three algorithms will be given, and conclusions will be

drawn concerning the most efficient algorithm.

Reduction techniques can be an effective means for reducing

48

JM __^dM

iwwwww^^^p—. lawn '■HI iniwi - ■■ I...I......I ..i.....! »I,.in .n i ^ .—,—i ^

\

computation time. The KI reduction used in Algorithm A is a classic

example. While this test applies only for a given right hand side, the

number of computations required is minimal — 1 multiplication, 1 addi-

tion, 1 subtraction, and 1 comparison per variable. Hence, even when

repeated for a number of right hand sides, the computational effort is

small. Another reduction techniqu« (which is independent of the right

hand side) is based on the following elementary result:

Theorem 11. If c, > c, and w, < w. then the constraint x, > x. may be
 i - j i - j i - j '

added to 1) without affecting the optimal solution values for (P) v

Proof; Assume x. ■ 1 and x* > 0 in an optimal solution for (P) . Then
J 1 K

let x » x* except x, » 0 and x. ■ 1. Since w. < w., this revised solu-
j i i - j

tion remains feasible, and since c. > c.. It has an objective value at

least as great as v{P). Since this is valid for each (P) individual-
k Jc

ly, it must hold for (P.) v k = 1,...,K. ||
k

This means thai: if x. is pegged or set to 0, then x, may be pegged

1
to 0 also. Similarly if x. is pegged or set to 1, then x. may be

pegged to 1.

Feasibility recovery techniques allow one to recover a feasible

sc'utior. for (P) , say, given an optimal (or even just feasible) solu-

tion for (P) . Suppose that a feasible solution x has been found for

(P1) where B-t1^wx>B-t. One approach is to find {j|x. = 1
c, c. 3

and -*• =• min —/. Then set x, = 0. Ifwx<B-t„,xisa feasible w. . , w, i — 2 j irx^-l i J

solution for (P) . If not, repeat the process. This approach simply

removes the variable which has the worst bang-for-buck from the knap-

sack. Of course, a multitude of other feasibility recovery techniques

49

 . ,——ftfrM—tfr—M^.^.

mr ■ -

"^-"»•»-««■^-fwmrT^T^^-^,»-.»,

can be derived us well.

Next we examine bounding problem reoptinizatlon techniques. Due

to the analytic nature of the LP solution for (P.) , it is clear that

reoptimization may be handled very easily. All that is required is to

keep track of the level of the fractional variable, and then to reduce

its value until it reaches a level of 0, or until the budget constraint

is satisfied, whichever comes first. If the budget constraint is not

satisfied, the next (contiguous by index) variable equal to 1 in the

original LP is reduced in the same manner.

Finally, wide remge bounding methods may be employed. However,

due to the efficient If reoptimization available, such bounding tech-

niques would not seem to be attractive for this class of problems.

We now consider factors affectinq the scheduling of solution

priorities. The tightness of the primary relaxation is generally a

function of x , which is itself a function of the varying right hand

side. It is easy to see that c »x is an upper bound on v(P) - v(P) ,

and that this upper bound varies from c - e to 0 (for e > 0) for suit-

able values of the right hand side. So the gap value fluctuates up and
i

down (since r varies) with respect to the right hand side, making it

difficult to capitalize on the behavior of the gap.

The behavior of the individual integer variables in an optimal

integer solution seems to be rather stable for the vast majority of

variables. This can be seen by the consistent pegging of variables to

0 or 1 as the right hand side varies. In general, computational experi-

ence has shown that variables with large bang-for-bucks tend to be

pegged to 1, and those with small bang-for-bucks tend to be pegged to 0.

50

■ ■ ■

rm^^~^~

Mm w..,

■*^T»^fpp^pjpp|p II ^ " '"■ ^ ■ ' ■""' 1 !■ II ■■!■ -— --^T ■ ■ - '^ ' — ■ "■ "" '' '— — *-*""

I

Variables with "average" bang-for-bucks tend to vacillate between 0 and

1 in optimal solvMone as the right hand side is varied.

The persistence of pegged variables (for varying right hand sides)

would tend to support the contention that scratch trees are rather

stable as the right hand side varies. Furthermore if the branch vari-

able is always chosen to be the free variable with the largest bang-

for-buck (as in Algorithm A] , then since the bang-for-buck ordering

remains the same, the selection of branch variables should remain sta-

ble. This line of reasoning, of course, simply reinforces the conten-

tion that scratch trees remain stable.

Three different solution approaches for 1) were tested, all of

which used Algorithm A as a primary building block. First, a serial

approach utilizing an advanced initial separation was attempted.

Algorithm B;

1. Set k ■ 1. Solve (P) by Algorithm A getting an optimal solution

2. If wx* < B - t, ,, x* is optimal for (P, ,) so let k = k + 1 and — k+1 k+1

return to the beginning of this step.

3. Set k = k + l. Ifk>K, stop.

4. rae a feasibility recovery technique to find a good feasible solu-

tion for (P.). Call it x* and the corresponding objective value.

5. Perform steps 2-7 of Algorithm A for (P.) •

6. Using the frontier of fathomed nodes (from (P) where pegged

variables from steps 2-7 of Algorithm A are eliminated) as an

initial separation (or candidate list) , perform steps 9-18 of

Algorithm A. Go to 2.

51

I ■! —- uMi^MMMMHIilHIMW - '---^ -^ ■'■ ..

Th« teat in step 2 is an application of Theorem 3. step 5 employs

the pegging teats of Algorithm A. In step 6 the initial candidate list

used may be described as follows (see figure below).

scratch tree for (P.) "reduced" scratch tree

Initial Candidate List for (P2)

(PJXj^ ■ x3 • Xg » 1, x6 - x7 ■ 0)

(P|x1 = x3 - 1, x6 - x7 - x8 = 0)

(P|X = x = x « 1, x = 0)

(pjxj^ = x3 * Xg - 1)

(P|x1 = 1, x3 - 0)

(P|x1 = 0)

In this figure a vertical line denotes a variable pegged to 0 or 1 , and

a horizontal lints denotes the automatically fathomed alternate branch.

The candidate list may be ordered in step 6 by the most promising relax-

ation value, in other words, when a candidate problem is fathomed in

52

k.. ._. !■ m**k1M*mfm *ia U

l^mtmmmfjqmiW!****^** ■■P^II ■-""■> m' »^»■■III i 'mm ^iiiwt ■■ ..nil -v ——i ■IJJIIVIDPWW j mmw''-~rir "Wtm^^* l,!" ^I"

WWWMfWW^rw»»-.,

■ ■
!

:

(P), say, it is stored along with its relaxation value, say v(CP) .

Then for (?) these candidate problems are investigated in decreasing

ordor of relaxation value.

The reduced scratch tree is found by simply eliminating the top of

the scratch tree which consists of pegged variables resulting from the

pegging tests of steps 2-7 of Algorithm A. This is done since in gen-

eral these pegged variables comprise upwards of 80% of the total number

of variables in the problem, and as a result the frontier of fathomed

nodes becomes rather large. By using the reduced scratch tree, the

frontier is reduced significantly. Clearly the reduced frontier is a

valid initial separation for (P) . The reasoning for this approach is

twofold. First, in removing the pegged variables from the scratch

tree for (P) it is assumed that having pegged a variable in (P) , that

same variable may be pegged ff x (P_). Second, in using the reduced

frontier it is assumed that Ü e onfathomed nodes in the reduced tree

for (P) will remain unfathoned for (P). We should also note that

occasionally "automatic" fathoming occurs for problems in the initial

candidate list. For instance, consider the candidate problem

(P|X = x = x = 1, x, = x,_ = 0). Now if x is pegged to 0 m (P) , 13 8 6 7 8 2

then this (CP) is fathorr.ed by infeasibility. It is also clear that a

candidate problem may be fathcaned if Z w^ > B - t .
i: Xj^ set to 1

A second solution priority is the lexicographically serial method.

Algorithm C:

1. Perform steps 2-7 of Algorithm A for (P.) » k = 1,...,K getting

(x*) and z*.

2. If ein optimal solution has been found for a (P) remove that index

k from further consideration.

53

iMM*»iiMiilMil—H ti - - iniMiiMii ii 1-^-.-. ,...,, i i n«ii>üMi«raiiii

n' ■"■ "■" ■■"" ■
^Wä'I«««.,.^,,,

 - — 1 I P ■' ■■«n n mnamwu ii "" "^ ■ i i .wmwi

3. Initialize the candidate list to consist of CO» k ■ 1#...,K

where (R) is the reduced knapsack in step 7 of Algorithm A for

(P) . Individual incumbont valuos are denoted by z*.

4. Set k - 1.

5. Stop if the candidate list '.s empty: (x*). is an optimal solution

and z* is the optimal value for k ■ 1,...,K.

6. If k > K, set k ■ 1. Select a candidate problem (CP) by a LIFO

rule. That is, choose the last candidate problem in the list

which has a "k" subscript.

7. Solve (CP.) getting an optimal solution x.

8. If (CP.) is infeasible, set k = k + 1 and go to 5.

9. If v((CP)) , set k = k + 1 and go to 5,

10. If an optimal solution of (CP.) is feasible in (CP.) , go to 14.

11. Choose that x which is the free variable in (CP) with the larg-
j K

est bang-for-buck.

12. If w. < B - t, - I w.
i-.x^ set to 1 in (CP^)

, then add (CP, x. = 0) ,
h D

h = k, ,K to the candidate list, add the restriction x. = 1 to

(CP.) , h = k,...,K, and go to 11. Otherwise go to 13.

13. If w. > B
3

w;
iix^ set to 1 in (CP^)

, add the restriction x.= 0

to (CPJ , h = k,.. .,K, add (CP. Ix. = 1) , h = k+1,... ,K to the
n n 3

candidate list, choose that x. which is the free variable with
3

the largest bang-for-buck, and go to the beginning of this step.

Otherwise go to 7.

14. A feasible solution to (P.) has been found. Set z* = v(CP) ,
K K k

(x*) = x, k = k + 1, and go to 5.

In step 2 the reduction method is applied to all K problems. Steps

54

i^MaMMfcatM

mmmm m~^^^' " '"i • ■■ipi i in
 - ^■- '—•■■""■"•'-

3-14 are a modification of steps 8-18 of Algorithm A. Basically, the

procedure is to concentrate on (P.) in fathoming tests and branching

criteria until fathoming occurs at a given node. Then at that node

fathoming tests and branching criteria are applied to (P.). This con-

tinues until all K problems have been fathomed, at which point back-

tracking occurs, and concentration of fathoming and branching at a node

transfers back to that (P.) with the smallest index k which has not yet

been fathomed at the new node under consideration. Two advantages of

such an approach are the avoidance of excessive storage of nodes, and

economies in the reoptimization from (CP) to (CP ..). Two disadvan-

tages are that an optimal solution for (P) is n^' always known for use

in feasibility recovery techniques, and the mo? , onicity test for opti-

mality cannot be applied since there is no pr —dained order for find-

ing optimal solutions for (P,)» k a 1,...,K.

A third approach is a serial method where each problem is solved

from scratch. The only links between problems are the monotonicity

test and the feasibility recovery technique. This approach could be

thought ct as the traditi' nal approach.

Algorithm D;

1. Set k » 1.

2. Solve (P) by Algorithm A, getting x*.

3. If wx* £ B - t , x* is optimal for (Pk+1) : set k = k + 1 and

return to the beginning of this step.

4. Set k=k+l. Ifk>K, stop.

5. Use a feasibility recovery technique on x* to get a feasible solu-

tion for (P). Go to 2.

55

■ -
"■ ■

»^—-i" ' ■■ ' ■ ' ' "'i ■. ■ 1 i ii i nur ■ ' ■ « "■ in ,""

A fourth approach, which was not tested computationally, is the

parallel method. An algorithm incorporating this method is very simi-

lar to Algorithm c. Steps 1-5 are identical. That is, the pegging

tests for all problems are done before the branch and bound procedure

begins. In the branch and bound procedure (steps 6-14 of Algorithm C)

at any given node in the tree, (CP) is solved for all problems which

have not been fathomed at a predecessor node. All fathoming tests are

applied to each of these candidate problems. A branch variable is then

chosen based on one particular unfathomed candidate problem, and candi-

date problems for each unfathomed candidate problem are added to the

candidate list. Of course if all candidates are fathomed at a given

node, branching does not occur. This approach was not tested computa-

tionally since it is very similar to Algorithm C, and since in general
I

more candidate problem relaxations would have to be solved in this

approach.

Computational results for the first three approaches are given in

Table D. Ten different knapsacks of 50 variables each, and ten differ-

ent knapsacks of 100 variables each were tested. Problem data was gen-

erated randomly as explained earlier. For each knapsack, 5 right hand

sides were selected by reducing each succeeding right hand side by 1%

for the 50 variable problems and .5% for the 100 variable problems. It

is readily seen that Algorithm D dominates Algorithms B and C by a con-

vincing margin, and that its behavior timewise is very stable. The

other approaches, while occasionally approaching the times of Algorithm

D, had a much larger variance in computation time. Reasons for the

superiority of Algorithm D are twofold. First is the effort expended in

bookkeeping and setup costs for Algorithms B and C. In general these

56

*. mMiiMii i'lii^iiiMaiii«! II ■ n ■ i *amttm**mmiimiaMiltmmiim^*m*i*mMm

'ww'"' , min i wmmm in ■ii!iii»nii IIHHII.IJ^II i. .|.,mi .m.ii.i.iin.miiiw,.»,^, „i IH^TTi-i'WiJiiiiyim^i.ii ^

costs outweighed the actual algorithmic calculations. A second factor

is that the implementation of the LP optimization in Algorithm D is

very efficient whereas the LP optimization in Algorithms B and C re-

quires more effort. In Algorithm D the LP ortimization is performed

only over variables with an index larger than some value. Also by con-

struction, these variablfts are all "free" variables. That is, checking

if a variable has been previously set to 0 or 1 is not required. In

Algorithms B and C, however, the LP optimization must be performed over

all variables and checks must be made to ascertain whether a variable

is free or not. These two factors would seem to be the major causes of

the increased computation times. As further confirmation of Algorithm

D's dominance, we appeal to the Remark in Chapter IV which in essence

establishes an upper bound on the savings which can be achieved by

using Algorithms B and C instead of Algorithm D. By coupling this

bound with the additional bookkeeping and optimization costs alluded

to earlier, we have some indication of why Algorithms B and C failed

to perform as well as Algorithm D. We note however that it is entire-

ly possible that results could prove to be different if solution methods

of recent years (now obsolete) had been used as the primary building

blocks for a parametric right hand side knapsack algorithm.

It should be noted that ordering the right hand side values in

ascending or descending order is not overly important, except in the

case where the change from one right hand side to the next is ve:y

small. In such a case there are advantages to both orderings. If the

largest right hand side problem is solved first, then the optimal solu-

tion may remai». feasible for the next smaller right hand side, and by

57

-■ --muM '"" -'• 1 ^^— ■■ »m^m^mtmm

*^^^^^^^m^^^^^~*mnmii M nnif IWIWU.I.„ i.. , i . ■ i».,. -—^^^. ■ ^^—„^

monotonicity its explicit solution may be avoided. If the smallest

right hand side is solved first, then the optimal solution value may be

an excellent lower bound for the next larger right hand side. On bal-

ance it would appear that the potential savings would be greater if the

largest right hand side problem were solved first. It is interesting

to note that the feasibility recovery technique (step 5 of Algorithm D)

was not effective. Computation times were better when step 5 was de-

leted. The major reason for this is that the feasible solution genera-

ator for (P.) nenerally gave a better solution.

Finally, we mention that a tradeoff point exists for solving 1) by

Algorithm D as opposed to DP. Horowitz and Sahni [1974] have devised a

DP algorithm which effectively splits the knapsack problem into two

separate problems each being one half the size of the original problem.

This allows savings not only in storage but in computation time as well.

While this approach is slower than Algorithm A for (P) , it does possess

the property that optimal solutions for all right hand sides 1,2,...,B

are found as a by-product. It follows that as K increases in 1) , the DP

approach becomes more attractive. Using a correction ratio of 8:1 for

computation times on the IBM 370/165 as compared to the IBM 360/91, we

estimate (using HS's results) that the breakpoint for a 50 var.Lab]e

Knapsack is in the range of 12 right hand sides. That is, if K > 12

for 1), then the DP approach becomes more attractive. However, as the

number of variables increases, DP solution times increase markedly.

For example, using HS's results again, the breakpoint is 22 right hand

sides for a 60 variable knapsack.

58

Mi- || ' .i..<.'i i iiinMillliMI—MllM^i^iii« , .^uM

r^^mi r ""' " '■' " ' • «""■' "11 ■ ' ilp ■■■■' ' «'M '.■■in I»' ':J|'WIUI » II, ULiiyr.'

C. The 0-1 Knapsack Problem with a Finite Number of Objective Functions

In this section we consider problem 2). In this PILP the feasible

reqion remains constant, while the objective function varies. Basical-

ly, Algorithms B, C, and D remain the same with two exceptions. Call

the modified algorithms, B", C , and D'. First, the feasibility recov-

ery technique is modified to: for x* optimal in (pk)» x* is feasible

in (P. ,) with value (c + f, ,)x*. Second, the variables must be re-
k+1 k+1

ordered by descending bang-for-buck for each problem. While or.? may

think that this reordering is unimportant computationally, we shall see

that sort time is actually a substantial part of total computation time.

Algorithms B' and C were not tested for this parameterization

because of the poor performance of Algorithms B and C for problem 1) .

The reasoning used in discarding these algorithms is threefold. First,

the computer implementation is quite similar to that used for 1). Thus,

since bookkeeping and setup costs took much of the computation time in

Algorithms B and C, it is clear that such would be the case for B* and

C' also. Second, the feasibility recovery technique was ineffective

for 2). This paralleled the ineffectiveness of the feasibility recov-

ery technique for 1). Third, scratch tree stability is worse, general-

ly, for 2) than for 1). '"his follows since in the branch and bound

procedure employed, branch variables are always chosen by best bang-

for-buck. Thus in 1), the branching remains stable since the bang-for-

buck ordering remains the same. However, in 2) this ordering generally

changes from (P) to (pi.+1) • We conclude, then, that Algorithm W dom-

inates B* and C.

Algorithm D* was coded, and test problems were run. Problems were

59

IM tmmjiüM ---- ■■ ■—■—■■■■'- -^■M^^MMiMijgg| ■MM -—--■-■-•-■ ll-l 1

F^PfPV^HIPpvWIHWVIV*"«*«"111-!'^11 Vlin»^m.i ■ i lipfpmp^n H lllll.lll«. -^--^ ■ . o i m^i iiiiii*||jiiHii>.««^^mp«ij|PiPi|ii M^.J HUM "M^I» T*wi'»»»l',l,F"'

i: . vv. • - ' ii'^cf nv-p-^wW1*" '

yenerated as explained earlier with the additional objective functions

randomly generated from the original objective function as follows.

One thiid of the cost coefficients were varied by ±10%, one third by

t5%, and one third remained the same. It is interesting to note (even

in the absence of comparison algorithms) that in the 100 variable prob-

lems, sort time consumed some 40% of total computation time. See Table E.

Finally, we note that use of a DP algorithm for 2) would require

K separate applications. Since Algorithm A dominates the best DP algo-

rithm. Algorithm D* would dominate it as well.

D. The 0-1 Knapsack with a Continuous Objective Function Parameteriza-

tion

In this section we consider problem 3) • This problem may be

thought of as finding optimal solutions for all possible weightings of

two criteria. For example, in a capital budgeting problem, management

may be interested in maximizing some combination of net present value

and of pay back over the first three years of a project.

From Theorems 5 and 8 we know that v(Q0) is piecewise linear and

convex, and that it is possible to deduce optimality over a range of 6

by verifying optimality at certain values of 6. Our procedure uses

Algorithm A as a major building block.

Algorithm D":

1. Set 9 = 0.

2. Solve (Q) by Algorithm A getting an optimal solution, x*(e). For
9

each feasible solution, x(e), which is found, add the straight

line (c + ef)x(e) to LB(6) (the convex lower bound function for

v(e)).

60

I .■II.-- " ■ ^^^MIMil—«,

mmm immm*—"—'"'''*-'" , in II^.iip. in n n ■ i i »II i i i,w< !■> m. ■— —i—-^

3. If 6 « 0, set 6 - 1 and go to 2.

4. Check whether x*(6) can be deduced to be optimal over some range

of 6. If optimal solutions have been found for V 6 e [0,1], stop.

Otherwise go to 5.

5. Choose a new value of 9 which is a breakpoint of LB(6) , which has

not been proven to be optimal, and which is closest to the previ-

ous value of 6. Go to 2.

This algorithm relies on building up a lower bound function for

v(Qa) by solving (QJ at the end points, e = 0 and 0 ■ 1. Then utiliz-
9 0

ing the power of Theorem 8, the next value of 6 is taken to be a break-

point of IiB(0) which is closest to the old value of 6, and which has

not been proven optimal as yet. This particular point is chosen for

three reasons. First, the value of LB(0) is likely to be a good feas-

ible solution for (Q«)• Second, reoptimization tr-thods (when employed)

are more efficient, in general, for a value of 0 close to the previous

value. Third, by choosing a breakpoint of LB(Ö/ the potential for de-

ducing optimality over a range of 6 is greater.

Computational results are shown in Table F. Each component of f

was randomly generated by a uniform distribution ü[10,100] which had a

50% correlation coefficient with the corresponding c.. Note that the

number of values of 0 for which (Q.) is solved, is generally slightly

less than twir.» that of the number of optimal solutions found for

v 0 e [0,1]. This suggests that the irethod for choosing the next value

of 0 is quite effective. Also note that sort time for the 100 variable

problems comprises about 40% of total computation time.

61

MUtfHÜM

****'-"••* .■■.».■■„„„,
'^■•■■""''"J"1 WP» l ■ >r--^i7-"VT»r>"-T--- ■nwi^iM.ipiifn^^pmi i

Table A

Comparison of HS Algorithm and Algorithm A Omitting Steps 1-7

(Time in milliseconds excluding I/O and sort time

on an IBM 360/91)

Problem Number of Algorithm A
Identifier Variables H&S Omitting Steps 1-7

1365 50 6 4

1397 50 8 5

1398 50 8 6

1326 50 12 8

1406 50 7 5

1366 50 16 11

1282 50 7 5

1340 50 15 9

1288 50 9 7

Total for 9 problems 98

Average for 9 problems 10

67

7

62

- - - -

-nil I. II»H pnij. mii^ | ^^i i i iii| i | lHHiywip ^■rf-.'—^ ■-w--'>i^ ■•>•

..»rI->>M<«4«WM. mvanp >■

Table B

Computation Time in Milliseconds for Algorithm A

(excluding sort and I/O time on an IBM 360/91)

'1

Number of % Reduction Time for Time for Total
Problem Variables in Steps 1-7 Steps 2-7 Steps 8-18 Time

1365 50 88 2 0 2
1397 50 82 2 1 3
1346 50 62 2 2 4
1326 50 56 2 4 6
1406 50 82 2 1 3
1366 L0 58 2 6 8
1282 50 80 3 1 4
1340 50 82 2 3 5
1288 50 78 2 3 5
1468 50 86 2 1 3

Total 21 22 43
Average 75 2 2 4

2823 100 89 3 2 5
2772 100 65 3 2 5
2763 100 67 3 5 8
2945 100 88 3 1 4
2795 100 99 2 0 2
2706 100 85 3 5 8
2589 100 99 3 0 3
2992 100 95 3 1 4
2447 100 94 3 0 3
2771 100 86 3 1 4

Total 29 17 46
Average 87 3 2 ^

5531 200 86 4 3 7
5790 200 79 4 10 14
5423 200 94 4 2 6
5641 200 99 5 0 5
5614 200 90 4 3 7
5536 200 94 4 2 6
5108 200 93 4 2 6
5274 200 95 5 1 6
5448 200 92 4 4 8
5734 200 93 4 4 8

Total 42 31 73
Average 92 4 3 7

63

mmm — ■'—•--—-' '-■- ..i, ,. -,.;^.^...^.^.. _... ..u^

lMW%''rf*)j^'M!^gy!<^»^wiwiwi^^ .m~ — _-..

Table C

Relative Increases in Computation Time

as a Function of the Number of Variables in a Knapsack

Number of Variables KI_ Algorithm Algorithm A

50 1.0 1.0

100 1.7 1.1

200 4.2 1.7

64

 ■- — —; -- ■ • '*

mm ^mm^m ~1~'I9 I DU, HI liHip«

•i ET
(0 0)
<0 >

O 0) 0
«M 0

e «
5 £*
•H -H >i

0 *■> -H
tr H <H
•H S H 0)
< 8 Ä -P

8^

c
o
H a»
•p H

«N « *
H M fM

\ft o\ a\ r-t
rH r-H (N <N

VO CM <•
H «M

•H
U
o
H k

M
"T <D \0
i-l M (M

VO 0> V0
N CM H

O O f»
N «*) «N

n w m

c
•rt

•a -o O

I
•P JQ
•■H in
M

o
c

5

O VO O
N W ^ m o 00

CM
r» vo
en m

CN

VO
CM

n H \o
H eo •-•
oo

Q

0)
r-l

EH

U

I
•P
■H
H
0
oi

n)
•H
M
0)
W CM

. vO
X

a
CM

0> in
H m

in

CM

O
CM in

CJi o
CM

00 CM O
■-I O CM
O H

•H

0 •n •0 Ifl

g § ■0
0)
P

5 J3
3

i-(Ol
•H in Ü 1 M C

&
Ä •^ ^
•P

Q l <« » vO 5J

id
•H CM

«

in oo vo
<M r» <»i

vo m m ot
co vf o> e\

a. tu
2 X

vü en n
O «-i <M
0\ H

0)

s

■rl

<W V)
0 0)
H

4) (0

z >

«J ^r vO o 00 ID en CM t- CM « oo ■* in
•H VO ro f* a\ 00 n T n 00 z H CM (M
M H H rH r-l r-l H H rH
V H
W

:2
to

•0

o O O o O O o o o o
in in in m in m m in m in

0)
0>

'S 2
P

<
4» -H

g ^M

in r* 00 vo
vO <ri f CM
n ro n CO

VO VO CM O 00 00
O vO 00 ^i 00 vO
^ ro CM ro M «*

65

i.iiiiiii.nmiii ii.j»»^»»*il<MaMI—MM
 ■ "^ —

Hil^^^l*»WWWP!WW^P " " "■ ll imm^mwr*i•»•'>>*<•■ ■■ i.i »■ n...»^.»..^.»--' —■•' ■'

IIWW 'WWW#WWINnifch—v*-— .^t..,,.

..'. tr
m iu
«1 >

(-1 0) ü
>M u

1 «7.2 ! +J C 5i
!H-^

0» -H H 1J

3 8^5

fM
t£ CO H CO « «O
oi «N o «•)«*• n

o CO in r- w VO
<N fNI <M 00 (N

I
H M CO CO 00 O H CO \0 «

CM O VO r-
U CO n ^ m »f «f ro c«« <n VO n
o M
&

■a
3
.5
■p
c
8 %^

Q

(1)

O "O TJ

5 J3 rH C
•H in o u
8.5 .9

IM
o

a.

H O in V in o r- 00 'j' ro r» VO in
t^ P» o a. M in vo in o O in (N <N

iH H CM CM iH •H M H

■P m ov o a. rH ro o» in r-l (i. H '» in
r o 00 rr H r> in 00 in m <T> O" r« in
u vo H H N ^j- * l-l «n P~ <N
fl (N
0>

PiCiOiCCOiOiOiOiOiOi
ZZ2ZZÄ2ZZÄ

22Z2ZZZZZZ

OOOOQOOOOO oooooooooo
HrHMHrHr-IHiHHiH

rorMroinr^vD^fMr^vo
mOO.NfMrOMCvlflO o
r"p>ioflor»vo«naiPir^
CMr>l«N<N<NOJfvjf>)M<M

0

(U
-0 •n
in

-0
§

4J

•&
•rl
M

0) 0)

n) (0 u

I I

66

■--1-'—" ■•—:-- "'- ■'-~- . ■!!■ . I I -■-" ^—tli-*—*■

1 " ' , " IPPWPIWUPI.J '^^^ BWWPUPwwywF

E

Table E

Algorithm D1 (Traditional) for the Knapsack Problem with 10 Objective
Functions. (Time in milliseconds excluding I/O but including

sort on an IBM 360/91)

Number of
Problem Variables

Sort
Time

Time
Excluding Sort

Total
Time

1365 50 26 39 65

1397 50 26 36 62

1348 50 27 57 84

1326 50 27 72 99

1406 50 27 52 79

1366 50 27 73 100

1282 50 26 39 65

1340 50 26 60 86

1288 50 25 62 87

1468 50 26 44 70

Total 263 534 797

Average 26 53 80

Average/objective
function

3 5 8

2823 100 61 78 139

2772 100 64 75 139

2763 100 60 83 143

2945 100 61 62 123

2795 100 60 74 134

2706 100 62 84 146

2589 100 61 62 123

2992 100 61 78 139

2447 100 62 118 179

Total 552 714 1266

Average 61 79 141

Average/objective
function

6 8 14

67

 1.1—I ■ r i^.,.-.-, iiiiiiniliiiimi

*.,,'l-.«

-""••'" ■ " r—r*-»- ■)1II"»1IJ»11'"I^ -«-—»™-~^^„

o

Si
u a\

•OO

o «•>
(0 X
3 n

C
o

IM 9
O H

5
CD

>

id

0
■p M

8- £
a
QJ
J3 •0

■a s
> rH

0
»M 71
0

a>

z o

10 Q)

o -3

in ID

m

mninHmtrtr^vovoot «MIO mvoowCTir^uiHHin

HOvp^vOHi^vorMm vow
«tiN^oo^inootDvoat oovo

0> CM ^r in n
o <Jv VD »* \0

n vo in o
m r^ oo r»
n t-t H

r» in
<* CD
00 iH

0)
H

-9
fr*

C

■8
u
X
4)

§
n 4)

Sä
V g

o
«M

•S

Q —

4J

0

0
w

c

3
l-l
u
X
w

-ot: s
»M (fl
0 1)

iH
M •9
Q •H
R Hi y «s
2 >

inooowinrovooiro roco
<Nr-i<»»in<Nfnvo<*»'*vD oo^1

Hvownrnvoror-t^fs <T>
o^foomo^mrooNOfi o
M H N H i-l

vOOvOft^vOVOOO «O
HHHMHi-l(NMCMM O^

CM

oo vo in CM oo ^
o v i^ c> vo n

O O^ CO 00 CO T
o r* r» ro ro r-

oooooooooo
ininininininininmin

rHinCOvOOHifOtvOvO
in«*><NOv<NmrovOfMO>
CMmrocMi'innN^rro
iHrHrHHlHrHHHiHi-t

(0

0)

oooooooooo
oooooooooo
HMHMHHHHHH

(NWroW'S'ffil'nincN
(NHrocoi-iOinvDinr«
r^vor^mo^vot^Är^in
«NCNfMfMMINNrMfMCM

a)

O

n
u

<

68

1

■ - ^—?--^- ■■...-:-.. ■ M M —iri

< ■■ Uli iiiiH,tii ! in i i.lHWppy -^~- I'-f'*.' wnipiin.H^ipw^pWPpjTPl"1!» •«ipwtwii^iwi'' ipri ■Tirrwr' <mfit 91 js mfm.it,* ••r^i-yf-

■—•'■ ■-■'-; ■ " • . . , 1 : .,, (r^ff^tmggg^

VI. THE PARAMETRIC GENERALIZED ASSIGNMENT PROBLEM

Consider the problem:

mm

Xij-o,i

(A)

ZEc..x. ,
id jeJ 1D 13

Z r,.x,, < b.
. _ i] i] - 1

x, . - 1

V . e I

V j -. J
iel

where c. > 0, r., > 0, and b. > 0. This problem has been referred to
ij - ij 1

as the generalized assignment problem. Let the index set I denote a

collection of eigents, and let the index set J denote a collection >f

tasks. Eich tesk j is to be assigned to exactly one agent, and each

agent i may perform a collection of tasks as long aa these tasks do not

violate the agent's resource, b.. The amount of resource which agent

i must use to perform task j is denoted by r. ., and the cost to perform

the task is denoted by c. .. The problem, then, is to assign each task

to an agent such that agent resources are not violated, and such that

the total cost of performing the tasks is minimized.

Various real world problems can be modeled accurately as gener-

alized assignment problems. These include scheduling variable length

television '""•.nmercials into time slots, assigning software development

tasks to computer programmers, and scheduling payments on accounts

which require "lump sum" payments. See Ross and Soland [1974] for

other examples and motivations.

In this chapter we present an efficient branch and bound algorithm

(Ross and Soland [1974]) for (A) which utilizes a Lagrangean relaxation

as the primary relaxation. Thus a linear programming relaxation is not

69

■■■■IMMllMh iMMOMiMÜiaMHMIM ^■■.„-..^-.■.-^■•.■■■"-^-■^■■'-'"'-■■■ ■■■■- .^-^.--■■■^■.u..

11 in ■■■> ' !■ »im I-HII. ii in I»»II«H ii pium,,» m'11"11 'Ml "ITHWI i.iiWI.-i"

required. After this we consider three parameterizations of (A) , namely:

4) For k = 1,...,K solve:

mm E I c4 4x,4
xij-0,l iel jeJ 13 13

(V
Z r^x lbi -h.k viel

j e J

I
iel

x. . = 1
ID

V j e j

5) For k = 1,...,K solve:

I min
x^-0,1

I E (c, , + f. .,)x. ,
^ ^ 1] iDk ID
iel DeJ

<v jeJ

iel

r. .x. . < b.
ID ID - i

x. . = 1
ID

Viel

V j e J

6) For V 0 e [0,1] solvei

nan
x. .=0,1

ID

V

E E (c + ef)x
iel jeJ J

E r.,x. . < b.
■ T iD ID — i ^eJ J -"

E
iel

x. . = 1
ID

Viel

V j e J

where h., , f. ., , and f. . are scalars.
ik x^k 13

Algorithms are presented for 4), 5), and 6), computational results

are given, and conclusions are drawn regarding the most efficient

algorithms for each parameterization.

A. An Algorithm for the Generalized Assignment Problem

Ross and Soland [1974] present an efficient branch and bound

70

 " !■—tf 111 m* ■"-'■■■■ ■ nirtiiiiniiliir iiiiriif iiiii'liiMÜ

mmmm m ""' I ''^ '"' i,».1.'!'"i »"■iiiimiuiiiimm .nf imi-'■■■sii'i.)>ip.i...^p..-.

algorithm for (A) which does i.ot use linear programming as the primary

relaxation. Rather, a relaocation is used which requires the solution

to a number of 0-1 knapsack problems. We present a variant of their

approach utiliring the concept of Lagrangean relaxation (Geoffrion

[1973]) .

Before stating the algorithm, the primary relaxation will be

developed. Consider the relaxation of (A)•

mm
x. .=0,1

(LGR,

id jeJ

Z
iel

c. .x..
ID ij

i]
= 1 V j e J,

This relaxation simply ignores the agents' resource constraints, or

equivalently a vector ß = 0 is assigned to these constraints, and the

term Z 3. (Z r, ,x. . - b.) is placed in the objective function. Thus
. _ i . _ ij ij i
iel DEJ

(IGR^) may be solved as a special linear program by replacing x. .=0,1

by 0 < x. , < 1 . It is obvious that an optimal solution to the linear

program (LGR..) is an integer solution which satisfies the constraint

x..=0,1 . Call this solution x
GUB

It is also easy to see that.

optimal dual multipliers, X. , for (LGR1) lie anywher« in the range

[c. , ,c. .] where c. .is the smallest c. . in column j, and c. .is

the second smallest c. . in column j. A second (and generally tighter)

relaxation is:

min (E £ c. .x. .) <■ E X . (1 - E x. .)
x. =0,1 iel JEJ ^ 1:) jeJ :, iel 13

ID

Z r. .x. . < b.
i] il - i

Vie I,

71

'" |"1"''' "■■ ■ -—•■■■■■ Mgyma^^^j—^-^.., Iri!■,!-,! „ l.lll ...w,—.,-. ^,-1-'-..-myyggi
■*—-■■■ ^-^■,- i^u r

m^mmm in.i i wmmmmm -—.

which is equivalent to;

EX. - max I I (A.-c,,)x
jeJ ^ x. .=0,1 jeJ id ^ ^ 3

(LGR^
jeJ

r,.x,. < b. Viel
ID ID - i

where A. is cnc^en to be equfl to c. . V j e J • Note that this
3 V

problem separates on I into |l| independent 0-1 knapsacks. Also it is

GUB
clear that all variables which are equal to 0 in x may be set to 0

in an optical solution to (LGR). This follows since it is assumed

that r. . > 0, and since the corresponding cost coefficient (X. - c. .)

is less than or equal to 0. Thus over all jll knapsacks there are a

total of only |j| free variables. An optimal solution to (LGRJ will

be called x

After introducing some additional notation, a branch and bound

algorithm WLII be stated. Let S be the set of variables in a partial

solution. In other words, S = { x. . I x. . is assigned a value of 0
ID ' i]

or 1) . Let J = { j I j e J and ? x. . ■ 1 for x. . e 3 } . Let (A)
F ' ID ID

be as given earlier and let (B) be:

(B)

£ c :; . + min I I c. .x, .
x. .ES

1; 'J x, .=0,1 iel JEJ,, ^ ^
ID ID J F

X. .«fS
ID

I
iel
x.^s

x. . = 1 V j e J,,
XD J F

Let (C) be:

72

• !— ■■ —
■

;ryr.i' tfwfM". ■

win» ii i.iii in ■» i ni»i,.ti|^.> HI . i i UMIWII r'^ffi'nm jiiiimnmipmunniiKi u) ,„?, ui^wwiw—rv ■ .-m

■ ■ '■ >

(C)

l c.,xÄ.+ l A. - max I T. U. - c, .)x. .

1J F xljiS F

Z r, .x, , < b. - E r»-x«4 Viel

x. .jts »fi

Let (C) be (C) with ^.«0,1 replaced by 0 ix.. ^1 .

Algorithm E:

1. Initialize the candidate list to consist of {A), and let z* be a

large number. Set S = 0 and J = J.

2. Stop if the candidate list is empty: if there exists an incumbent,

then it is an optimal solution for (A) , otherwise (A) has no

feasible solution.

3. Select a candidate problem (CP) from the candidate list using a

LIFO rule.

4. Solve (B) for this candidate problem and get a so^utioi x , If

v(B) ^ z" or no feasible solution is found, go to 2. If

XGUB i)(lj x j is feasible in (A), go to 9. Otherwise, find
s_ 1:]

a vector A,, each component of which corresponds to a j e J ,
r

where X, is chosen to be the second smallest c. . in column i
D ij

such that x. .jifs. If a At does not exist for some j e J ,
ij] F

set i* = {i|x.? = 1}, and go to 11.

5. Solve (C) . If v(C) >_ z*, go to 2.

6. Solve (C) and get a solution x ' . If v(C) > z*, go to 2.

■7 m *. *e LGR MOD ^ MOD II .it . . . 7. Try to modify x to x so that x u (ux. .) is feasible
S ^

in (A) , and such that the corresponding objective function value

is equal to v(C). If successful, go to 10.

73

^■r n..!.. i ---.-—h.^ ■,!—- ,-»■ 1—>.—^__—^— ■- i i — - - ■ -■ ■ , itimmi^mtitmimmM
-■■■ ■ ■ ■ ■ ---"■*

mmmm ■■ii«Mli»-a^^p^w< ■in i ■ ' ' ■•»• in .i|i..,ii,».-....wi..,mi in 11; ,—,.^,.,.1 . ,..,. . ,— .^i|i ...1^.1 nn. .,.-—^, ■

8. Separdtf (CP) into two new problems by finding that variable

which satisfies:

t.
i*j*

= max

ID l-i

If there is a tie, break it arbitrarily. The new problems are

placed in the candidate list in the order (CP|x *-4 * i«3
= 0) and

(CPlx.^..^ = 1). Update S and J„ for each new problem. Additional
1*1* F

variables may be assigned to 0 in (CP|x.^.# 1): a) x... = 0

if i fl i* and x ^ S; b) x.4J = 0 if x.t_. i S and r
* ' ■" ' "i*j *' "i*j i*j

b,
x,..eS
i*j

E r...x.. , for j ^ j*. Update S, and go to 2.
„ i 3 i i

r . ,^ /n^ J M0D GUB

9, Set v(C) - v(B) and x = x .

10. An improved feasible solution for (A) has been found. Record

this solution as the new incumbent, x* = x ^1(1' x. .) and set
S 13

z* = v(C). Go to 2.

11. Add the problem (CPIX..,? = 1) to the candidate list. Update S
1*3

and J . Additional variables may be set to 0: x.^, = 0 if

x. . . i S and r., . > b.
i*D I'D

E r.... x.... for D ^ D . Update S,
„ i*n I*D

1*3 and go to 2i

In step 4, (B) is solved and the usual fathoming tests are

employed. If all fathoming tests fail, an attempt is made to tighten

the relaxacion Ly solving (C) . However if some X? , j e J does not
3 F

exist, this implies that only one agent i* is available to handle task

j

peg tu 1, additional variables may be pegged to 0, thus hopefully

tightening the relaxation even further. If a peg to 1 is not possible,

and all fathoming tests for (C) fail, then (C) is solved in step 6.

Hence, x.^? may be pegged to 1 in step 11. As a result of this

74

^.
 i i ii i na "■ ■

■■ "■ """ up i iipi»»ii. m""» v W—in»! ii -■- m*»;-'- trm*

fWfiPfpMf'V'iif&lP'*; «r»*— ■■<iSHi>.'i,-'»H W.^WKIBWwJM?

Note that Algorithm A is used to solve each individual knapsack. Of

course, the knapsack algorithm need not be used for agent i if the x

solution does not violate that agent's resource. In step 7, tasks

which are not assigned in the solution to (C) (this occurs since the

L x..=l VjeJ constraints have been relaxed) are reassigned to

GUB

itl iJ)

the available agent with the second smallest cost. If all such tasks

are reassigned, and the knapsack constraints are satisfied, then this

modified solution is feasible and has an objective value precisely

equal to v kC). Thus a new incumbent is generated. In step 8 when all

fathoming tests fail, branching must occur. The branching criteria

uses a weighted penalty for not choosing an agent i* to perform a task

j* multiplied by the current amount of resource available to agent i*.

Note also tha' the ordering of the new candidate problems in the

candidate list is such that the x....... = 1 branch is investigated first.

Computational results are presented in Table G. The 50 variable

problem is taken from Ross and Soland [1974] . The nine versions differ-

only in the agent resources is shown. All other test problems were

generated per Ross and Soland. The r. ,,c. . were randomly generated
i: ID

with distributions U[.5,25] and U[10,50] respectively. Each b. was set

equdJ to 9*|j|/|l| + .4*{max E r, .x .} where x is an optimal
iel jcJ ^ ^

solution to (LGR). The results in Table G show that the algorithm

is very efficient for most problems. Note that our algorithm improves

upon the Ross and Soland version for the 50 variable problems by

investigating fewer nodes and solving fewer 0-1 knapsacks. Couplod

with Ross and Solana's results, we conclude that the algorithm is an

- ■ ■ - ■ -■ ■' ■

■■■ —

f

i

■wmi»'-»' ii wwwpwipiww i i ■ ■im.iii.wi.mi imiiii .m^ ■ i.i»^ '- ■K>WIIIIIIIIWIII pi imn

Hand Sides

order of magnitude faster than other algorithms such as RIP30C which

is a general purpose 0-1 code, and IPNETG which is a branch and bound

generalized network code.

3, The Generalized Assignment Problem with a Finite Number of Right

In this section we consider problem 4) . By allowing the right hand

side to vary, flexibility is introduced into the model. This allows the

analyst to examine the effect of changes in agent resources. We begin a

formal analysis of 4) by investigating the problem dependent techniques

of chapter III. Then the factors affecting the scheduling of solution

priorities will be discussed, and three algorithms will be presented.

Finally, computational experience will be cited, and conclusions d- wn

concerning the most efficient algorithm.

The use of reduction techniques in 4) does not appear to be

promising. We mention one such technique, and then point out its

shortcomings. Consider agent i and tasks j and j . Let M. =

max {b. - h } . The value M, is the maximum resource available

to agent i over all K problems. Ifr., +r.. >M. , then
ij, ID-, i i /.

x, , + x. , < 1 is a valid constraint for (P,) V k = 1,...^ . However

the addition of such a constraint destroys the structure of the pioblem,

and consequently the solutions to various relaxations (i.e. (LGR..)) are

no longer analytic in nature. The crux of the situation is that in

attempting to tighten the primary relaxation, the structure of the

problem is destroyed, and hence solution efficiencies are lost. Thus,

76

^^murmmmtumämmu, n

w^mm w "■-■—■ ■mi Mnnpimia i i MI i ■ i.« ,..«. "■~~~^^—^ ^Ml»" I'llH"! 'WMiiWi

^fWlWWS-m«'««^»!».;.,

certain reduction techniques can actually complicate the problem, and

in fact their incorporation into an algorithm may retard efficiency.

We now consider feasibility recovery techniques. Suppose that we

have found a feasible solution x for (P.) which is not feasible in (PJ.

Further, suppose that not all agent resources are violated by x in (P) .

One approach is to reassign tasks from an overassigned (i ufeasible)

agent one at a time such that each reassignment is made at the smallest

additional cost, and such that it is made to an agent with sufficient

resource available. Other approaches can also be devised ad infinitum.

Next are bounding problem reoptimization techniques. Suppose that

at a generic node in a branch and bound tree, (LGR_) has been solved to

optimality for a candidate problem associated with (P) . Can this

solution be reoptimized efficiently for the candidate problem at that

node which corresponds to (P»)? In general the answer is no. There

are two reasons for this. First, additional pegging of variables to

0 by ii.feasibility (as in step 8b of Algorithm E) may occur if resources

are reduced from (P) to (P) . Conversely if resources are increased,

variables may r.o longer be pegged to 0. Of course if feasibility pegs

are not enforced, tnis reasoning does not apply. Second, as we have

seen in chapter V, solving closely related 0-1 knapsacks is best

accomplished by solving them separately. We observe, however, that if

the change in the feasible region is monotone, ant' x' remains feasible

T r"R *
in (P) , then x is optimal for the Ce^didate problem corresponding

tO (P2). ;

Wide range bounding techniques may also be employed. Once again

suppose that a candidate problem relaxation associated with (P) has

77

" IIIIMllllil I II im— i iiiiMtaJMMUMim
-'■ - iim

nMRMWiiiiM "■'■■' ■■

been optimized at a generic node. We wish to calculate a dual bound

for the candidate problem associated with (P-) at that node. Such a

hound may be calculated (cf. chapter III) , but one must be careful to

use "good" dual multipliers in calculating the bound. (Dual multipliers

are said to be "good" if the corresponding Lagrangean relaxation, which

uses these multipliers, generates a tight bound.) If (LGR) has been

solved to optimality, then "good" dual multipliers are not readily

available since (LGR.) consists of |l| independent 0-1 knapsacks. It

is generally true that deriving "good" dual multipliers for an ILP is a

difficult task. Nonetheless, if (LGR.) has been solved, dual multipliers

for the continuous relaxation are available, and a dual bound may be

calculated for the candidate problem corresponding to (P) .

We now turn to the factors affecting the scheduling of solution

priorities. Tightness of the primary relaxation as a function of the

right hand side can best be explained by using the formulation:

'V

min E E c..x..
x =0,1 iel jeJ ^ 1:)

E r. .x. . < b Viel
jeJ Xj ij -

E
iel

x. . = 1 V j e J
ID

LGR where b is a non-negative scalar. As b increases, the solution x

for (LGR) comes closer to feasibility because the knapsack constraints

become less constraining. In fact, for a sufficiently large value of

b, X^ is feasible in (S,) , and hence is optimal in (S.) . The rela-
D D

tionship between v(S) and v(LGR) is indicated in the figure below.

78

mmtimuimmmm
mammmtmum

tau--IIMJU&UMI

mmi mmnmm "I "•' • " ' ■■ "" '• ■ l' n—■ '■ •'■",) ii. .■liiMiiMUlliim. ».I n i i.i^wtm Piiiwmi.|.ii),-,.mm.|iiiiyiiiii>in|i

V(-)

— v(LGRj)

(Note that the graph will not be continuous, in general, but is drawn

that way for the sake of simplicity.) By referring to Table G for the

50 variable problems, we see that as the agent resources decrease, the

number of nodes investigated generally increases. This empirical

behavior, when coupled with the graph above, substantiates the belief

that as the tightness of the primary relaxation deteriorates, a problem

becomes more difficult to solve (in terms of the number of nodes

investigated).

The behavior of the individual integer variables in an optimal

solution is difficult to categorize for this particular parameterization.

As resources are reduced, some tasks may be reassigned to other agents.

However it is not a simple matter to deduce which tasks are reassigned.

The persistence of scratch trees as b varies seems to be good,

empirically speaking, for small changes in the right hand side. This

is because the solution to (LGR) remains rather stable, and In the

solution to (LGR») the "most attractive" variables tend to remain at

a level of I. Since the branching rule is to branch on the "most

LGP attractive" variable which is equal to 1 in x , the ordering of

potential branch variables tends to remain stable, and hence the scratch

trees remain stable. The cause of instability in general is the

GUB
pegging of variables to 0 by infeasibility. This may cause x to

79

w
It','

TifR
change, which in turn changes x . We note that if the pegging by

infeasibility were not implemented the scratch trees would tend to be

moro stable. Of course this stability is bought for the price ot

larger scratch trees, since fathoming power at a node is reduced when

the logical pegs to 0 are not enforced.

Next we present three approaches for solving 4), each of which uses

Algorithm E as a primary building block. The firs: is a serial approach

which utilizes an initial separation consisting of the fathomed nodes

from the previous (P). Recall that we define (P.) and (Pk+1) to be

relatively monotone if F(P) 2 F(Pic+i
) * This aPProaeh is similar in

spirit to Algorithm B of chapter V.B .

Algorithm F;

1. Set k = 1. Solve (P) by Algorithm E getting an optimal

solution (x*), . k

2. If k > K, stop. If (P) and (Pk+1) are relatively monotone, and

if (x*) e F,(pv+i
)' then (x*)v is 0Ptilnal in ^k+i5' so let

k = k + 1, and return to the beginning of this step.

}. Set k = k + 1. If k > K, stop.

4. Use a feasibility recovery technique on (x*)^-, to fir-d a good

feasible solution for (P) . Call it (x*)k and its corresponding

oojective value, z*. k

5. Use the frontier of fathomed nodes from (Pk J as an initial

candidate list, and order the list in increasing order of optimal

relaxation value calculated for the (CP •,) problems. With this

' ordered candidate list solve (P) using steps 2-11 of Algorithm E.
j

Go to 2.

80

 - ■ i '"i '' ^^— "-•^■-iiiMiniftari .. lil ■^»■ni ■ ■ m miif nur i ■ „i^a^umnKm!^!!^!!^!!!

WHiPPW^il I I iWHl mvm .■■.■■.■■ —n i^nm^ ■■..■.—.m ■■. ^ UM» Jim» MW,i^Wlt"lW|l" ■*l»"yf- ' ' ■i"- ■,■ "WHU"" ■ K .

■

Note that under monotonicity, step 2 may allow one to avoid explicit

solution of a particular (P. .,) • Step 4 can be expanded to allow a

feasibility recovery technique for (Pv.1) to be invoked whenever a

feasible solution for (P.) is found. This option is incorporated in

our computer implementation. In step 5 if (P^) and (Pk+1) are

relatively monotone, it may be possible to "automatically" fathom a

candidate problem if vUCP^)) ^ z* . This follows since

v(P) ^.v(P). Also of course an automatic fathom occurs if

Z r.,x.. >b. -h., for some i e I.
xirs

A second approach is lexicographically serial which is similar in

spirit to Algorithm C in chapter V.B.

Algorithm G;

1. Set k « X.

2. Initialize the candidate list to consist of (P) V k = 1,...,!(.

Individual incumbent solutions are denoted by (x*), and solution
k

values by z*. Set J = 0, S = 0 V k = 1,... ,K. Go to 4.

3. Set k = k + 1. If k > K, set k = 1.

4. Stop if the candidate list is empty: (x*) is an optimal solution,
iC

and z* is the optimal value (if they exist, otherwise (P) is
K K

infeasible) for V k = 1,...,K.

5. If k > K, set k = 1. Select a candidate problem (CP) by a UFO

rule. That is, choose the last candidate problem in the list

which has a k subscript. If none exists, set k = k + 1, and

return to the beginning of this step.

6. Solve (B) for this candidate problem and get a solution x ^ .

If v((B)) >^ z* or no feasible solution is found, go to 3. If

81

..^:J^,......t.^..^^..^.^t[Mtm^it ._, ...-■■.. .^...-^- ...->..-J..^........_.,,.. ■ ■.^--■i.h |.<..i.i..l*|-»l^aM*^^

H"«Hi" — ■-r'"1""" '' ' ■■ > II«^»H ■VF"*"' mirnM. ,„,,;,„mw^*— -^ ,f,.„. w. . ,—,~ ^.w-^i^mmm rtrf

- /.... . ■ '

■.;

:;

x IJ(U x) is feasible in (P.)» go to 12. Otherwise, find a

vector A, each component of which corresponds to a j e J . and
F

where X. is chosen to be the second smallest c. , in column j such
j ij^

that x. . i S.. If a X" does not exist for some j c J , set

i* = {i|x « ■ 1} , and go to 13.

7. Solve (C) . If v{(C)) 1 2j*f go to 3.

LGR
8. Solve (C) and get a solution x . If v((C)) ^,2*, go to 3.

.•r LGR ^ M00 ^ . M00 11/11 \ * .^i 9. Try to modify x to x so that x U (U x. .) is feasible

Sk 1]

in (P.) , and such that the corresponding objective value is equal

to v((C)). If successful, go to 12.

10. Select a branch variable by finding:

v- max
LGR .

x. . =1
13

(X. C .)-(b. - h. - I r x..) / r. .
ij 1 ik Äj £3 i]

x^.eS

£=i

If there is a tie, break it arbitrarily. Add the problems

(CP |x. *.* = 0) V h = k,...,K and (CP |x,^.# = 1) V h = k,... ,K

to the candidate list. Update J and S V h = k,...,K. Additional
F n

variables may be pegged to 0 for individual (P) as in steps 8a

and 8b of Algorithm E. Update S, V h = k,...^ and go to 4.
h

11. Set vUC),) = v((B)1) and x"00 = xGUB.
k k

12. An improved feasible solution to (P) has been found. Record

this solution as "he new incumbent, (x*), = x " (U x. .),
k c 13

and set z* = v((C)). If k < K, use a feasibility recovery

i:

technique to find a feasible solution for (P. .,) • If this

solution improves the incumbent, set it equal to (x*) ari its

objective value to z*. Go to 3. J k+1

Add the problems (CP. Ix' = 0) V h = k+l,...,K and (CP, lx * = 1)
n1 3*3 h1 1*3

82

w^^^mm • '"•' •' mm mi ' ii, iHI

V h = k,...,K. Update J and S V h = k,...,K. Additional

variables may be assigned to 0 for individual (P) as in step 11

of Algorithm E. Update S V h = k,...,K and go to 4.

Basically the procedure is to concentrate on (P > in fathoming tests

and branching criteria until fathoming for (CP) occurs at a given

node. Then at that node fathoming tests and branching criteria are

applied to the corresponding (CP-) . Note that if (F) and (P) are

relatively monotone, and if v(CP) > z*, then (CP) is automatically

fathomed. Automatic fathoming also occurs if no feasible solution

to a relaxation can be found. In step 13 x.^ is pegged to 1 for (CPk) .

However the peg may not be valid tor (CP) , h = k+l,...,K . Thus,

(CP Ix ' = 0) and (CP, |x. „: = 1) V h = k+l,...,K are added to the
h' i*j h' i*:

candidate list. It is clear, however, that if relative monotonicity

holds between, say, (P,) and (P,) , n > k, then (CP, Ix.** = 0) need not
k h hi i D

be added to the candidate list.

A third approacn for 4) is the serial method where each problem is

solved from scratch. This approach is similar _o Algorithm D in chapter

V.B, and it may be dubbed the traditional approach.

Aloorithm H:

Set k = i-

Solve (P) by Algorithm E getting (x*), •
it K,

If k > K, stop. If (P) and (P,.,) ajre relatively monotone, and

if (x*) e F(P), then (x*), is optimal in (P ,), so let
x k+l k k+1

k = k + 1, and return to the beginning of this step.

4. Set k = k + 1. If k > K, stop.

83

MBB^OKIfc |M^MMH
:^. .^.^ ■J.^. ..-,. ■ .: ^-.„■■.... ■■-■..::

i ii i m m m i i 11 in ,m*mi'\iiwn-m,

5. Use a feasibility recovery technique on (x*))..! to 9®t a good

feasible solution for (P.). Call it (x*) , and the corresponding
K iv

objective value, z*. Go to 2.

Alternatively, step 5 may be placed in step 10 of Algorithm E

so that the feasibility recovery technique is invoktd for (P. .,)

whenever a feasible solution for (P) is found. This option is used
k

in our computer implementation.

Computational results for Algorithms F, G, and H are given in

Table H. Problems were generated randomly as explained in section A.

The first right hand side (for (P)) was generated as explained.

Succeeding right hand sides were obtained by reducing all resources

by fpproximately 2.5% for the 250 varrabl«; problems and 5% for the

Süü variable problems. Table I gives the ratios of the relative times

for e.ich algorithm. Note that Algorithm F generally dominates

Algorithms G and H, except for the 50 variable problems where Algorithm

G was best. This general domination by Algorithm F becomes more

pronounced as the number of variables increases. This behavior is

mainly due to three factors. First is the effect of bookkeeping and

setup costs. As problem size increases, computation time for the

primary rela. ._ions (LGR) and (LGR) increases, while bookkeeping and

setup costs remain about the same. Second, the monotoni^ity of the

feasible regions for this parameterization allows the automatic

fathoming tests to be used. If this test is successful, the primary

relaxations need not be solved. Third, tree stability tends to be

GUB
good for this parameterization due to the stability of the x and

T r"o
x solutions as the right hand side varies.

84

■ i i nmMa——I^MM jHaft
■ ■ - ■^-^■■'- ,1 ,..■ .,..:,..., ..^-1.»

'"■ ■'■iiM.P .■-.,..■,■■1.., ijijn, —.,,.,... iT „„„iiMur» ,11 lull. l| llliwunmiiniiiuiin . »iin

^fK/fiifim^m*"-'

C. The Generalized Assignment Problem with a Finite Number of

Objective Functions

In this section we consider problem 5). Basically, Algorithms

F, G, and H remain the same with three exceptions. Call the modified

algorithms F', G', and H'. First, the feasibility recovery technique

is modified so that it simply costs out a feasible solution to (R^)

using the objective function for (R^.J' Second, the monotonicity

test is no longer pertinent, and third, the automatic fathoming test can

no longer be used. However, note that the pegs to 0 and 1 remain

Vdlil for V k ■ 1,. .. ,K , since these pegs are based only on feasibility

considerations.

We remark that reduction techniques as examined in Section B do

not seem to be promising for much the same rf.asons. In addition

bounding problem reoptimization and wide range bounding techniques

would seem to be inefficiei t as well, due to many of the reasons

given in section B.

Analysis of the tightness of the primary relaxation in section B

tends t- confin» that the tightness is a function of how constraining

the agent resources are. Since in 5) these resources remain constant,

u • ■ • 1 GUB

the differences in tightness would seem to lie in the initial x

GUB . ,.
solution for each (ly, k = 1,...,K . If a particular x solution

"almost"' satisfies the knapsack constraints, then one might surmise

GUB
that the initial relaxation is tig'.it. Alternatively, if an x

solution heavily violates the knapsack constraints, then the relaxation

will be loose. Behavior of the individual integer variables in an

85

W|ll,a. , mmw<im<i mnwmww ■"■■ .MP...... >•<.• «...wipjm»..,....^ wr ill.— — -

uptimal solution seems to » • as obscure as for 4). The stability of

scratch trees seems to det .1 ^»rate for 5) as opposed to the stability

for 4). «e propose the following reasons for this behavior. Branch

r.cR
variables are chosen from among the set of variables for which x, , » 1 .

Now x, . = 1 (in (LGRj) implies that x., =1 (in (LGR.)). However,
i] 2^1] 1

GTIB
when the objective function is varied from (R) to (IO , say, x

generally changes also. This in turn implies that x varies.

Further, x ' may vary due to the values A . which are generated directly

from the objective function.

We nov present a sufficient condition for an optimal solution to

remain optimal for a certain parameterization. Suppose an optimal

solution, x*, for (A) has been found. Consider the problem (A*) which

for some task j, e J has the costs c.' . =c.. +d. Vie! where
1 iJ! iDi

s dj> 0 V i e I . Thus the cost for agent i to perform task j i

increased by d. units. Such an occurrence could be due to increased
11

processing cost for task j . We have the following result.

Theorem 12. Suppose x* . =1. If v(A) + d. < V(A|X. . = 0) + min d. ,
 Vi h - Vi i^i 1

then x* is optimal in (A*).

■

Proof; Since I x. , = 1 in any optimal solution, and since
iel 121

V(A|X. . =0) ^v(A), any optimal solution to (A'jx. . =0) must
Vl Vl

have a cost of at least V(A|X. = 0) + min d. . But x* remains
Vi i^i i

feasible in (A1) with a cost of v(A) + d. . Hence if the hypothesis
i1 ^

holds, x* is optimal in (A1). ||

Note that any underestimate of V(A|X. , =0), such as the value
11:J1

v(A), may be used in the theorem hypothesis.

86

g^lj^l^^^^^^^g^^lj^g^^lggjIgg^lJlM^lgglBll^lMtliaaMil^ in ■ mi 1 • ■ ■■• ■"•-'

l"1 i i pan »1. - • ~- -- ,.-.......—^-.—^_ __—■-■■ - '■ ■—■■-'■-- ■ ■—-».—' •— '■—'- i- wm

-4m*f*Hi»>* ■"•*•■*'■'■■*>■*'■ "v*

Two prublom sets were generated per Ross and Solana [1974]. For

the first set, additional objective functions for each problem were

generated randomly using the original objective function. One third

of the cost coefficients were varied by ±10%, one third by ±5%, and

one third remained the same. Table j gives individual problem results

(11-18), and Table K gives ratios of computation times for the

algorithms. We see that generally Algorithm H' performs the best,

with Algorithms F1 and G' sometimes requiring more than twice as much

computation time. This was found to be attributable to tree instability.

That is, the individual scratch trees were not stable from or.j problem

to the next. This points out the importance of scratch tree stability

in foraiulating parametric branch and bound algorithms. Basically the

evidence gleaned from these test problems is that the set of fathomed

nodes from (P) is not a "good" initial separation for (P). We

conclude that Algorithm H' would seem to be preferable for this

particular parameterization.

In the second problem set, an additional objective function was

generated by increasing all costs for one agent by 10%. Table J gives

individual problem results (19-23), and Table K gives ratios of

computation times. For this set of problems. Algorithm G' dominates

Algorithms F' and H'. This contrasts with problems (11-18) where

Algorithm H' generally was best. The reason for the difference is

greater tree stability which is a result of the less "radical"

parameterization in problems (19-23). Since costs are raised by 10%

for only one agent, the x and x ' solutions tend to remain stable

at a given node, and hence tree stability is more pronounced.

87

t-«—«^ ^ ■-— * — .J.^^:^ l-^J

f.
I

mfmmm

>nmum"-r-'.

___ _ ..,.„.,..^.^.i.. i. ^^—^-^-^ —■ ~ -

In conclusion, Algorithm H* seems to be best for more "radical"

parameterizations, while Algorithm G' tends to be best for "minor"

IJcirameterizations.

D. The Generalized Assignment Problem with a Continuous Objective

Function Parameterization

In this section we consider problem 6) . Our goal is to find

optimal solutions for all possible weightings of two different objective

functions.

Due to the relatively poor results for Algorithm F" 3.n section C

we did not code an approach using the serial method with an advanced

initial separation. An algorithm corresponding to G' was not developed

because of the inherent difficulty involved in choosing values of 0 at

which to solve a relaxation at a given node. Only the approach

corresponding to Algorithm H' was coded. Algorithm H" is similar to

Algorithm D" in chapter V.D with the exception of using Algorithm E

instead of Algorithm A in step 2 and replacing LB(9) by UB(0). The

reader is referred to chapter V.D for an explanation of the reasoning

behind this approach.

Test problems were generated per Rosb and Soland [1974] in

precisely the same manner as given in section A. The f.. coefficients

were generated randomly from a U[10,50] distribution which had a 50%

correlation coefficient with the corresponding c. ,.

Computational results are shown in Table L. Note that just as

with the 0-1 knapsack results of chapter V.D, the number of problems,(QQ), 6

solved is slightly less than twice the number of optimal solutions

88

iLijj [MiMjmMiiimiii^iiii '——-" "■ "'"

m^^^mmimwm

I
1

linn i nunimv^mpqiiiii.i iiamiiu iiin^<w^"uV,t itrm^n^^immmmmmfrmim\wß<mini .m i.nxv^wmiwmr'rw.im" >mt}i\i i im i KIWIIMII

Upmympftm «i^ifso '"W"»" -i'" wv ftmmmtM tmttui—am"

found over V 0 c !0.IJ. Thxa ii further substantiation of the

effectiveness of the method for solving the continuum of problems

(Q0) V 0 e [0,1].

89

▲ ^^ ■ <tm

IM ^Pllf' ' " " ■ ■" rr^ ■ .i|inr. «^iKfii p^n^nu,,!. („p,.,,^.

mrVtf&'W't^tO&y '

o

i

M

M H
0

ri c

3
4-1 U

X
(0 0)
4-1
H m
3 >o
(0 C
SO

o
0)
in

(0
c
0

•H

«J
4J
3

1^ 0
u

w ^
en

4J <£

o S

•H

o

13

0
W

SH

■a otl
4J

Hl

Vi
Ifl

1 X-l Vi
z o Zi

Uli

" (0
!*-(in
c H (51
IM 5
e rH

z o|

O
O

in 00
i-t H
o o

(^ rH 'J' (N in t^
o H ^r t ^r a\ o o o o o fM

0> m in a\ r- o> o
<N N rj

o

o> in
ro ro

o> m in

o\ in

O O O O O O O
in in in in in in in

m o

n (N vO in n o. a\ ■H M
O H H ■-• i- in T in ro
O O O o

•
o o • o • o m

r< (^ a\ in
m (N (N tN

m oo
o

o o
in in

4J
c

g

E W
0) iH
H "

81
iH

0) O

id
> (0

in

in &

o o

mininmininin inm

T 10 aj o fN ^r vO co o o 00 00 r- vD in tr

90

•MMMMMMM^BM

mmmHmmmiimwxil*!*'1* '•'••"" ""•^mmmmmfmmr* P«"«II mm

^^^ff^'''^1*^'' ■' «tmi^ntp^l . MmnD^lfv«« ~-»»k',-" > r'-rtüwi^wra»'

8

l-t

H r-l

u
0) (0

I ^ 9 «M o
Z 0 z

(A

IM (fl

° §1
0) S
§ 'H
z o

^r o ro n •O1 (N ro t^ O fM O o H o
rH r- ^ t^ H 00 vO (N • •fl1 in r- (N 00
o

• • O • • O • i-t • O • A
rH O • • O • o

•

in
m H a\ r» H m .H in f
•v -* in n r-l o 00

CM
VO

VO CM CM W
in

(Ti

in fl1 o
VO rH <N
fl" in

(0
*»
c
a)

(0
e
rH

o
u a
•o
4)
4J
(0
u
c
4)
cr

I

o
in
CM

o m

o
in
CM

o m
CM

o o m m
(N CM

o
in
CM

o
in
CM

o
o
in

o
o
in

o
o m

o o
in

o o
in

o
o
m

o
o
in

o o o o o o o o o o o o o
in in in m in m in in in m in in in

tn inminininmooooooo

rH o vo (N in H
vO oo
H H

VO
CM
00

I

Ol
in
oo

o fl
00 o

91

 -""-—"■-"—- i ■■mW i

 I ' '■ '—IPI ' ■""'■■ -I'- - » I......!.. I .., ■„.

Table H

Comparison of Algorithms F, G, H for the Generalized Assignment Problem
with 5 Right Hand Sides: Monotone Feasible Regions

(Time in seconds excluding I/O on em IBM 360/91)
_+

Algorithm F

mÜi?ial,

Problem
Agent
Resources

of
Nodes

A. 50 variable problem from
Ross and Soland [1974]

Total
Time

Algorithm G

of Total
Nodes Time

Algorithm H
(Traditional)
Number
of Total
Nodes Time

1. 88 5 .009
80 2 .011
7.. 41 .077
04 7 .017

56 *
Setup
Totals

19 .031

74
.011
.156 78 .110

5 .008
5 .010

29 .044
27 .042
29 .045

.007
95 .156

Randomly generated 250 variable
problems with 5 agents and 50 tasks

r

:

185 3 .018
180 0* 0
175 55 .189
170 0* 0
165 45 .141
Setup
Totals 103

.023

.371

185 21 .064
180 0* 0
176 3 .009
172 60 .240
167 0* 0
Setup .022
Totals 64 .335

179 1 .007
174 25 .070
170 0* 0
165 0* 0
160 0* 0
Setup
Totals 26

.021

.099

146 ,387

228 .527

3 .015
0* 0

57 .200
0* 0

51 .175
.023

11 .413

21 .065
0* 0

41 .155
45 .160
0* 0

.023
07 .403

1 .004
25 .073
0* 0
1 .006
1 .006

.019
65 ,135 28 .108

+ Due to the nature of the lexicographic serial approach, computation
times for individual problems cannot be broken out.

* Optimal solution from previous problem is feasible, hence optimal.
Feasibility generator time plus setup time.

92

idll

IW II in ' '■■"■■im ' '"■-■ —' ' ' " ■•■■■■' ■■' ■'

Table H (continued)

Algorithm F Aigorit hm G Algorithm H

Number Number Number
Agent of Total of Total of Total

Problem Reuources Nodes Time Nodes Time Nodes Time

5. 195 1 .007 1 .005
189 1 .006 1 .005
185 1 .007 1 .007
161 55 .224 55 .210
176 38 .128 43 .168
Setup
Totals 96

.021

.403 83 .304 101
.020
.415

6. 175 41 .107 41 .109
170 0* 0 0* 0
166 31 .101 43 .111
161 35 .103 57 .160
157 221 .787 253 .920
Setup
Totals 328

.030
1.128 459 1.391 394

.032
1.332

C. Randomly generated 500 variable
problems with 10 agents and 50 tasks

7.

8.

102 1 .009
97 1 .007
92 1 .011
87 21 .104
82 25 .080

Setup
Totals 49

.042

.252

107 1 .008
102 1 .007

97 33 .146
92 16 .078
87 39 .242

Setup
Totals 90

.047

.528

95 11 .031
90 0* 0
85 1 .008
80 23 .067
75 1 .005

Setup
Totals 36

.045

.156

100 ,365

129 .586

1 .006
1 .006
1 .006

21 .080
75 .270

99
.042
.410

1 .006
1 .006

33 .125
51 .206
63 .387

^49
.047
.777

11 .028
0* 0

11 .028
33 .080
17 .060

.044
78 .221 72 .240

^ ^-J i (iriil.^ll^i

93

 i i mmm ^J

»«t*"r'1^' v.'. |LJ|L1)

— .>pi|.i| I..H, -"

Table H (continued)

Algorithm F Algorithm G Algorithm H

Number Number Nrjiber

Agent of Tota3 of Total of Total

rroblern he sources Nodes Time Nodes Time Nodes Time

10. 112 1 .007 1 .006

107 17 .057 17 .050

102 5 .021 19 .081

97 35 .142 47 .200

92 8 .026 47 .198

Setup .040 .040

Tota]ä 66 .292 110 .417 131 .575

Table I

Ratio» of Computation Times for Algorithms F, G, H with H Scaled to 1.

Number
of

Problem Variables Algorithm F
(Serial)

Algorithm G
(Lex.Serial)

Algorithm H
(Traditional)

1. 50 1.00 .67

2. 250 .90 .94

3. 250 .83 1.31

4. 250 .92 1.25

5. 250 .97 .73

6. 250 .85 1.04

7. 500 .61 .89

8. 500 .68 .75

9. 500 .65 .92

10. 500 .56 .73

94

" ' " " ' « ' ■■IT— i i. ii ani ■> ■ ..^ . ■i ■ i i) ■ m II,W»III [iiininnin.|ii|iniiiiimiiiii in in iiinmu

r

Table J

Comparison jf Alc,otithms F', G', H' for the Generalized Assignment
Problem with a Finite Number of Riqht Hemd Sides
(Time in seconds excluding I/O on em IBM 360/91)

Algorithm F'

Objective
Function

Problem Identifier

(Serial)
Number
of Total
Nodes Time

Algorithm G'
(Lex.Serial)
Number
of Total
Nodes Time

A. Randomly generated 250 variable
problems with 5 agents and 50 tasks with K = 5

Algorithm H'
(Traditional)
Number
of Total
Nodes Time

11.

12.

13.

14.

a .008
b .012
c .012
d .015

e #
Setup
Totals

.015

5
j_022
.084

a 43 .115
b 22 .068
c 22 .05»
d 22 .C52
e 42 .09b

Setup
Totals 151

.030

.416

a 455 1.630
b 377 1.372
c 881 3.056
d 439 1.376
e 754 2.888
Setup .030
Totals 2906 10.322

a 1 .009
b 1 .015
c 1 .012
d 1 .015
e 1 .011

Setup .022
Totals 5 .084

.056

178 .384

2245 5.388

,056

1 .007
1 .007
1 .007
i .007
1 .007

.018
5 .056

43 .080
1 .007
1 .007
1 .007

21 .040

67
.028
.159

455 1.192
377 .905
665 1.600
213 .511
105 .252

.030
1815 4.390

1 .007
1 .007
1 .007
1 .008
1 .007

.023
5 .059

Due to the nature of the lexicographic serial approach, computation
times for individual problems cannot be broken out.
Feasibility generator time plus setup time.

95

*.

HMHUI — II

rmm^* ^l i in im ■• ■""— ■

Table J (continued)

Objective
Function

Problem Identifier

Algorithm F'

Number
of Total
Nodes Time

Algorithm G'

Number
of Total
Nodes Time

Algorithm H'

Number
of Total
Nodes Time

B. Randomly generated 500 variable
problems with 10 agents and 50 tasks w;th K = 5

15.

16.

37.

18.

a 51 .181
b 156 .583
c 162 .517
d 94 .260
e 60 .179

Setup
Totals 52 3

.040
1.760

a 49 .192
b 25 .111
c 139 .617
d 238 1.202
e 60 .230

Setup
To tads 511

.050
2.402

a 211 .802
b 708 2.847
c 388 1.836
d 222 .915
e 839 4.103

Setup .098
Totals 2365 10.601

a 89 .453
b 59 .236
c 52 .215
d 842 4.003
e 110 .653

Setup .102
Totals 1152 5.662

512 1.251

313 1,160

1589 J32

51 .112
71 .156
49 .108
23 .051
25 .550

219
.129

1.106

49 .162
1 .006

69 .228
143 .472

1 .006

263
.124
.998

211 .780
301 1.130
355 1,311
363 1.342
599 2.224

.124
1829 6.911

89 .312
41 .144
35 .123

37« 1.330
79 .277

.112
1781 6.228 623 2.308

96

T^
-,. .J. ■.J_.^..,.-J-.J. ■-■. ^-^..^Lt^,.*' t^

w~~ ' "' •' ■ ••'■ ■"»'■'■-"■ m ",—' ' '• ' PM—.. ■......■■■Pi. —.—.. nv—

Objective
Function

Problem Identifier

Table J (continued)

Algorithm F'

Number
of Total
Nodes Time

Algorithir G'

Number
of
Nodes

Total
Time

C. Randomly generated 250 variable
problems with 5 agents and 50 tasks with K - 2

Algorithm H'

Number
of
Nodes

Total
Time

19.

20.

21.

22.

23.

a 19 .075
b 10 .051
Setup .011
Totals 29 .137

a 63 .219
b 104 .453
Setup .011
Totals 167 .683

a 73 .312
b 59 .299
Setup .015
Totals 132 .626

a 35 .168
b 114 .502
Setup .012
Totals 149 .682

a 39 .173
b 24 .109
Setup .012
Totals 63 .294

29

117

118

155

.093

.317

.369

.591

19 .069
19 .082

38
.007
.158

63 .220
85 .340

148
.012
.572

73 .315
87 .374

160
.015
.704

?5 .163
139 .629

.013
174 .805

39 .]68
43 .194

.011
63 .214 82 ,373

97

■ - ■JM ■■■ U I ■

■^^ww^wi^w^w^—«^^^yiiiiiiijii. in^^HUBWPI^wpywwiWwn 'i ii'iiwinn iini.p miiinii ». ■ n ■ im.iiin.

Table K

Ratios of Computation Times for Algorithms F',G'rf' with H' Scaled to 1,

Problem

11.

Number
of
Variables

250

Algorithm F'
(Serial)

1.50

Algorithm G'
(Lex.Serial)

1.00

Algorithm H'

(Traditional)
1.

12. 250 2.46 2.27 1.

13. 250 2.35 1.23 1.

14. 250 1.44 .95 1.

15. 500 1.60 1.13 1.

16. 500 2.41 1.16 1.

17. 500 1.53 .87 1.

18. 500 2.45 2.70 1.

19. 250 .87 .59 1.

20. 250 1.19 .55 1.

21. 250 .89 .52 1.

22. 250 .85 .73 1.

23. 250 .79 .57 1.

98

■*"'■■■■'-■•'■■ ■ ■•• -■^-. -^ ■ HIHI—MÜH—MMIMM

■■ I "I" "■■ ■ —^^-■

,-■"■•' , M

UX't miii^njilPWi -" i»»"f.i<«ii». i ■urn ijimniniwilil» iinnnii. .WIUI iliw»,wiFi!iil,»|il, JIMIIHII

1

c
o

•H

Ü

ID

«wo'?
O -H »

*> o,

^•2 J
§5

<T> o» m

M

IM CO CM <N
vO

CM

ID at ^r (N (M vO CM 00 CN
p a fH n <r o r* 00 ^
O -H • • • • • t •
H H >N r« in CO

t
0 m

0) • -0
0 0
2 2

CM H H (Ti -i ro <ri
00 «N O (TV CM r-l CM
\D f)

CM

o o o O o o o
in in m in in in m
CM CM CN CM CM CM CN

o o o o o o o
in m in m in in in

SI
in in in in in m

u

CM
in
(N CM CM

05
CM CM s

99

»PI i ;■ nw ■ nil |iii,M».m» inimi—»'- ■.» iw« up TIIII 11.1 ■. .■ •*•,• ■ "- - - •— '"" !■" i •■"^»I>BIP»W,W" " "W """" '"W"11' '" "H

VII. THE PARAMETRIC CAPACITATED FACILITY LOCATION PROBLEM

Consider the problem:

min 2: 5: c x + I f .y
\A1

0 id JeJ tel 1 1

(1-) y^0'1 j- x _< s y Viel

jeJ ^ 1

E^.-D, VJEJ

iel lj :

where c.. > 0, f. > 0, S. > 0, and D. > 0. This problem is often
13 - 1 - x]

referred to as the capacitated facility location problem. The index

set I denotes a collection of potential facilities (or plants or ware-

houses), and J denotes a collection of customers which are to be serviced

by the facilities. The maximum throughput for facility i is S., and D,

is the demand attributable to customer j . The cost, c , is the

transportation cost for supplying one unit of demand to customer j from

facility i. The fixed cost, f., is the cost of opening facility i .

A great deal of research has been devoted to this particular

problem class. An exhaustive survey on the subject is given in El-Shafei

and Haley [1974]. Geoffrxon [1974b] presents an up-to-date catalog of

current solution methodologies and computer codes available for solving

various formulations of the facility location problem. Quite recently

Akinc and Khumawala (AK) [1974] devised an efficient branch end bound

algorithm which has dramatically reduced computation times for (P) over

existing algorithms.

In section A we shall present a branch and bound algorithm for (P)

which is comparable in computation time to AK's algorithm for most test

problems, and improves upon their results for other test problems. In

100

i. - ■ ——Ha 1 ^-.

IMIkni

um!*—*** \ w im.mmmmmmwv \ i UP wii^

section B we shall present an approach for solving the general parametric

capacitated facility location problem:

7) For k = 1,...,K solve:

min I I (c + *m)*iA
+ £ (f + g)y

^k5
yi-0,1

^ xij 1 (si + Tik)yi v i e I

E x - (D + E) V j e J
iei 13 J Dil

where d. ., , g., # T,, , and E,, are scalars.
13k ik ik 3k

A. An Algorithm for the Capacitated Facility Location Problem

Consider problem (P). Wr shall begin the analysis of this problem

by presenting basic, well-known results, and then some new results will

be proved. After this, an efficient algoritluu will be stated, and

computational results will be cited.

Sä [1969] observed that in the continuous relaxation

of (P), namely (P) , where 0 <^y. <^ 1 replaces y. = 0,1 , it is possible

to substitute the y. variables out of the problem. That is, let

y. = Z x, . / S, . This may be done since for any optimal solution
1 _ 3 eJ _ 1 _

(x,y) to (P) , we necessarily must have E x. . = S.y. Viel. The

substitution is carried out by replacing the supply constraints by

E x..<S. Viel» and the objective function by
. _ ij — 1
jeJ

min E E (c,. + f./S.)x. , . It is easy to see that the resulting
x..^ 0 iei jeJ lj 1 i lj

problem is a transportation problem. Hence, (P) may be solved using a

transportation or network algorithm rather them a linear programming

algorithm. This allows for significant savings in computation time.

101

Xilirnir- ■ ■■- ■ - ->—^« mmm

1 ■ " ' " I) ii in-WB

P^'V'HfKfäftomw?'*''* "*.. , mmmt>***»v*'s-*W':: ■

Ellwein [1970] gives the following result. Let (P) ■ (P|y - 1

viel).

Theorem 13. If v(P ly - 0) - v(P) >^ 0 , then the optimal solution
o

value for (P) is not affected by setting y ' 1 .
o

Basically this result states that if the added transportation cost

incurred by closing facility i is greater than or equal to the fixed

cost of opening facility i , then facility i may be fixed open in an
o o

optimal solution to (P).

AK [1974] give the following result. Let T. ■ {j|c . - min c. .}
1o o2 i 13

and for V j e T. let A. - min c.. . The index set T. is that set of
o J ayi J o

o

customers j for which facility i supplies the demand for the least
o

cost. The value X . , j e T. is the second smallest transporation cost
3 o

for customer j.

Theorem 14. If max E (A. - c. .)x. , >_ f, , then the
0 <xJ ,< D. jtT, •' o o o

-ioj- i
optimal solution value for (P) is not affected by netting y «« 1 .

o

The knapsack problem in the theorem statement gives a measure of

the transporation cost savings which can be realized if facility i is

opened. If this saving is larger than the fixed cost f. , then the
o

facility may be pegged open.

AK show that Theorem 13 dominates Theorem 14. Specifically, if y.
c

can be pegged to 1 via Theorem 14, then it can always be pegged to 1

via Theorem 13, but not vice versa. Both theorems allow one to peg

facilities open if a particular test is passed. For the Ellwein test a

102

,p|nMaviVpHMBRpavaHWim^HV||^~.iMn»il>*p«aBw,B'I" n « "' "< < ■■■'

transportation problem is solved for facility i. The (AK) test on the

other hand only requires a continuous knapsack to be solved for each

facility i. Computationally then, the (AK) test is more attractive

even though it is a weaker test.

We now present a result which tightens the constraint structure of

(P). Let Q. ■ {j |c. . = min c, . and c. . ft min c. .}, and
o o i J oJ 1^1 J

L. = min { Z D. , S. }. If Q. ■ 0, then define I D. to be zero.
o jeQi

3 o o jzQi
o o

The index set Q. denotes those customers j for which facility i has
i o o

the unique smallest transportation cost over all facilities. Let

{x*,y*) be an optimal solution for (P).

Theorem 15. It the constraint Z x. , < S. y. is replaced by
 .,IT—II

JeJ o o
L.y. < E x, .<S.y. , the optimal solution to (?) will .»ot be ii— .,13— ii 00 jcJ o 00
affected.

Proof; If y* =0 the two constraints are equivalent. For y* = 1 there
o o

are two cases: a) I x* . = S. and b) £ x* . < S, . If a) holds,
.,1] 1 ..ID 1
jrJo o jcJ o o

the two constraints ..'.re equivalent. Only case b) remains. We will

show that Z x* . > L. . We assume I x* , < L. . Recall that
. , x j — 1 . _ i j 1
3eJ o o JeJ o o

L. = min { I D. , S. }. For some j e Q. we must have x* . < D. ,
1 n 3 1 01 iDD o :cQ. o o oJo Jo J 1 o

since otherwise we would have Z x* . = Z D. > L So for
IT 1 — i •

DeQi oJ DEQi ^o
o o

x* . < D. 3 an i, such that x* . > 0. Now by transferring one unit
oJo Jo lJo

of flow from x* . to x* . , we clearly remain feasible, but since
1-.D 1 D lJo oJo

j e Q. we have c. . < c. . , and so the modified solution is not only
o ^i 1 3 1.] 1

o 00 1 o
feasible, but it also has a smaller objective function value.

Contradiction. I I

103

■■ - ■ .r...^M*^**m*~m~~. - • - ,J

*'^p"^'"" '" ' ""' ■ ■ "" " "" • .--••." - —- - .

■,^*^*%,^'v'*" '■ ■ vm»<Hm> *rm mm~~~~*~~.

■ - ■ --•—'—^-' ■ -w»

This result allow:: us to put a lower bound on the throughput of

any facility in an optimal solution to (P). By adding this lower bound

on throughput, we theoretically tighten the primary relaxation (P) .

However since £ K » S.y. Viel» and since L. _< S V i e 1/ we

sea that this added restriction on throughput has no effect on (P).

Nonetheless, it con be used to advantage for other relaxations which

are tighter than (P).

Another result allows precedence relations of the form y. <_ y to

be added to (P) . Such a constraint implies that: a) if y ■ 0, then

y ■ 0 , or b) if y » 1, then y = 1 . Let V ■ {j |c ■ min c..} and
2 2 1 1 Ij . ,_ lj

A "*

for each j e V,, let > . « min c, . . Define x, . to be an optimal
1 j illlf2 iD ID

A
solution to v(E) » mew. E max {0 , c - c ^»x..

0 <:x. .< D. jeJ 3 -' 3

.Z7
X1J-S2

Further, define v(L) " mauc l (X. - c .)x .
0 <x,.< D. jeV, 3 1 1
- lj- j 1

E x < S - E x. .
jeV1 ^ "

1 jeJ l3

The value v(E) is the maximum added transportation cost incurred if

facility 1 is used ia place of facility 2 in any facility design. The

value v(L) is similar in meaning to the term in Theorem 14. It is a

reasure of the savings in transportation cost if facility 1 is opened,

«nd facility 2 is closed. Let (x*,y*) be an optimal solution for (?) .

Theorem 16. if s > S and f + v(E) - v(L) < f2/ then y* < y* in any

optimal solution to (P) . Henc« the constraint y_ <^ y may be added

to (P) .

104

—

^rw-r ii tinm •milt* i —™ I''" ' • ' ■. I- ' ■' —'"-Ii" ^ •• i»««l ' • I "■" '—■^m

■

Proof; Assume not. Then y* ■ 0 and y* ■ 1 in an optimal solution to

(P). We will show that v(p|y - 1, y - 0) < v(p|y " 0, y - 1) in

order to gain a contradiction. Suppose that we have an optimal solution,

(x*,y*) , for (Ply. ■ 0, y = 1) What changes occur in the optimal

let x, . «» x* . and x_ .
1] 2] 23

solution value if we now set y = 1 aiid y_ = 0 ? Since S ^_ S we may

0 V j c >. This merely reassigns all flow

emanating from facility 2 to emanate now from facility 1. All other

components of (x,y) will be set equal to the corresponding values in

(x*,/*). Clearly this modified solution is feasible. Now v(E) is the

maximum additional transportation cost incurred by the switch of

facilities. Note that S_ is used in the knapsack constraint for v(E) ,

since S is the maximum amount of throughput which can be handled by

facility 2 in any feasible solution. The value v(L) is the minimum

amount of transportation cost which can be saved by opening facility 1.

Note that (S, - £ x, ,) is used in the knapsack constraint for v(L),
1 jej ^

since it is the maxinvm amount of throughput for which transportation

savings can be assured. Observe that the v(L) calculation is closely

related to the calculation in Theorem 14 with the additional stipulation

on V and X . which excludes i - 2 from consideration since y = 0 in
i j t

(p|y = 1, y = 0). By combining the relevant terms, we have

?
f + v(E) - v(L) < f . If inequality holds, then a feasible solution

exists with objective value less than v(p|y =0, y - 1) .

Contradiction. |I

105

mmmm 1

m* »urn* •■i"1»11 iwmaawi HP!"

Observe that this result «squires the calculation of only two

continuous knapsacks for each pair of facilities. Thus the computational

burden is liqht. We note, however, that if a constraint y £ y were

added to (f), the transportation structure of the problem would be

destroyed. Nonetheless, these types of constraints may be added to

other relaxations, and may also be used in conditioral pegging and

penalty tests.

We shall now give a relaxation which is at leart as strong as (P)

in objective value, and which generally yields stronger penalties.

Consider the following Lagrangean relaxation where the demand constraints

are placed in the objective function:

min Z l c..x.. + Z f,y. + Z X,(D. - I x. .)
x. .> 0 iel jeJ ^ l3 iel ^^ ^^ jeJ :] :, ''■T ^
13-

y-0,1 £ x, < S.y.

iel

Viel,

or equivalently

(LGRJ)

Z X.D. - max Z Z (.X. - c. .)x. . - L f.y.
jeJ ^ : x..>0 iel jeJ D ij ^ iel 1 1

y^o.i

Z x. . < S.y. Viel.
, , in — i i

This is a valid relaxation and it is easily seen that v(P) ^v(LGF(:) >

v(P) if optimal dual multipliers, \, from (P) are used. We mention

that if a transportation algorithm is used to solve (P) (the y, 's

having been substituted out of the problem) , then the dual multipliers

for the LP formulation of (P) must be recovered from the optimal dual

multipliers of the transportation formulation. The recovery is not

difficult to accomplish, consisting only of elementary transformations

for a number of special cases. These transformations yield X.

106

--■■ ■ .■■^.^. i.q-..,.-^.-.. .. i^^

^»■MJ.■ii.i,! in in» ■■■■iii ■" I'm •<*• mm^vn* *•*••**«<<,,„ i immmiiuiiii ..umtiim». »i -- —- ■ ■

Unfortunately it is often the case that v(LGR) » v(P). Thus, here

the Lagrat.qean relaxation is no stronger than the continuous relaxation.

However, there are at least three different calculations which generally

tighten the relaxation measurably.

The first is a simple improvement in the \.. Specifically, set

X. ■ max {X. , c. .} V j e J where c, . is the second smallest

transportation cost for customer j over all available facilities.

This adjustment is intuitively appealing since one would envision the

cost of increasing a customer's demand by one unit to be the transport-

ation cost from the second cheapest facility which serves customer j.

It is this economic interpretation which leads to the definition of

\. . Empirically, this choice of X has been effective in tightening

the Lagrangean relaxation.

The second improvement is the addition of the constraints:

L.y. < Z x.. Vie1 to (LGR,) whPre L. is the lower bound on
i'i ~ , ij 1 i

throughput for facility i as given in Theorem 15.

The third improvement is to append the constraint:

Z S.y. >_ E D. to (LGR) . This constraint forces feasibility
id JEJ ^ 1

of any facility design by requiring that sufficient facilities are

opened to handle the total demand. Of course the customer demand

constraints may still be violated in (LGR) since they have been relaxed.

By combining all three improvements, we have the following

tighter relaxation:

107

mU^^MMMMMMaBM

11,1 '•" " "—'" Tl""—" » i ■ <«-*iqi .*....p.i, .<m VH, , ™,—r ■ —> "^ ipi-ll wii"WP"lI l^T^ , -itwmi'mm "«""■' ■" " JHNi«i»Ai'-»Tf"^l'"W!IBi

ifW*" wWW-IWi**'

E X D. - max E E (X. - c)x - E f.y.
jtJ J ^ O^x <D iel jeJ :) 3 D id

y.-0,l

(LGR^ V i r I
jeJ

£ S y >. E D
iel jeJ ^

While this relaxation may appear to be difficult to solve efficiently,

we shall show that it is not. By projecting on the space of y variables,

we see that the optimization over the x variables can be carried out

independently. Clearly if y. * 0, then x. . = 0 VjeJ. Jfy, =ii

_ 0 _ 0 0

then x. . = x. VjeJ where x. . is an optimal solution to:
o oJ oJ

. (i ,X) = max - f. + E (X. - c. .)x. ,
0 <x. .< D. o ieJ oJ o
-i0j- j

Li <- .^/l j^Si

Hence, for each i e I a continuous knapsack is solved to obtain v(i,X).

Then the following problem is solved over y:

max
y,=0,l id

E v(i,X)y.

(F) Z
ie

S.y. > E D.
I :eJ

Problcri (F) is a 0-1 knapsack problem in y which may be solved very

efficiently by the methods of chapter V. Let y denote an optimal

solution of (F) . We note that generally the knapsack has fewer than

I l| free variables, since if v(i,X) ^ 0 we may set y. * 1 in any optimal

solution to (F) . Thus, in orde* to solve (LGR) we first solve a

continuous knapsack in x. . . for each facility i • Then we use the
io(.) o

108

mmmmmm

"■ l,l I ""■ '■l *■"■■-*■ iiM"'"iw iPif^nnwi' ■>■ i« mimwmi '■■■f ■■»■*-MII.» i !■ H|IIBM> i I^I n ii u ipup«

I,

'■ "

solution values for these knapsacks to solve a 0-1 knapsack in y.

Note that penalties may be easily calculated for the y variables.

For example, suppose y. ■ I in (F). A penalty for y, ^ 0 may be found

by solving (FJy ■ 0) or (F|y ■ 0) where (F) is the continuous relax-

ation of (F). Thus (F) is a continuous knapsack. Clearly, at a given

node in a branch and bound tree if v(r|y. » 0) ^z*,where z* is the

cuTent incumbent value, we may set y ■ 1 in all successors of that

node. Further, these continuous knapsack solutions may be used in

choosing the next branch variable at a node. Specifically, one may

A
order the y variables in decreasing order of P. = max (0 ,

|v{F|y =l-y.) -v(F|y. «y.)]) . The branch variable is chosen

co be i » {ilmax P. } . If a LIFO priority scheme is used, then one
i i .

would place (CPly. = 1 - y.) and (CPl y. = y.) in the candidate 1 i i ' i i
o o , o o

list in that order. Thus the y. = y, branch would be examined first.
i x o o

We shall now state an efficient algorithm for (P). Let K
n(K1) be

the index set for y. set to 0(1). Let K = I - K. - K. .
i 2 0 1

Set K " K = 0, K = I, and let z* be a large number.

Algorithm I:

1.

2. For V i E K, perform the pegging test of Theorem 14. If

successful, set y. = 1 and set K = K U {i}

3. For V i e K perform the pegging test of Theorem 13. If

successful, set y. = 1 and set K = K U {i}.

4. Initialize the candidate list to consist of (p|y. = 1 V i e K).

Call this problem (CP) , and go to 9.

5. Stop if the candidate list is empty: if Hiere exists an incumbent,

then it must be optimal in (P), otherwise (P) has no feasible

109

MMMB ■mil« ■ ■-——■ MM

^m *^mim Ullil miWil ' ' ■' I mm ***r*^m*^^m*m*m*mi <nv •-

Mmm r^?iW|)5cJ ». ■ ■

so lution,

6. Select a proulem (CP) from the candidate list using a LI?0 rule.

Reset K , K to coincide with the restrictions of (CP). If BND(CP)

exists, and if BND(CP) > z*, go to 5.

For V i e K perform the pegging test of Theorem 14. If successful,

set y. =» 1 and set K, - K, U (i). * 11

8. For V i e K2 If

^ » ^ U {i}.

E S < 2 D , then set y - 1 and set

9. Let (CP) be replaced by (CP|y. = 0, i e K ; y. » 1, i e K^) . Solve

(CP) as a transportation problem getting a solution (x,y) .

10. If (CP) is infeasible, go to 5.

11. If v(CP) > z*, go to 5.

12. If (x,y) is feasible for (CP) , go to 21.

13. If v(CP) +
i: 0<y.<l

(1 - y.Jf. < z*, go to 22.

14. Solve (LGR) corresponding to (CP) getting a solution (x*,y*).

15. If vdiGR^) 1 z*' 9° to 5-

16. Calculate penalties P. by solving (Fly, = 1 - y*) V i e K .
i « l J. *

.7. For V i e K if P. + v(LGR) > z*, set y. = y* and set K * =

K # U {i}. If a y. has been pegged to 0 in this step, go to 19.
^i

Otherwise if a y. has been pegged to 1 add (CP|y. = 0, i e K ;

y. = 1, i e K) to the candidate list and go to 6. If no variables

have pegged to 0 or 1, go to 18.

18. Find i = {i |max P. } . If there is a tie, break it arbitrarily,
ie^ 1

Add the problems (CP|y. = 1 - y*) and (CP |y. - y*) to the
o o o o

candidate list. Associate the value BND(CP|y. = 1 - y*) =
o o

110

m^mmt

^^^^mKmimmmtmmwimmi^' > i * fmmv*mmm>**mmmvmmm

P + v{LGR) with (CP|y - 1 - y* 3 «"^d go to 6.
o ' o o

19. For V i c K if E S < E D , set y. » 1 and set
2 ÄeRUK -{1} ^ jeJ J 1

^ - ^ li{i}. r 2

20. Replace the current (CP) by (CP|y. = 0, i e K ; y. ■ 1, i e K).

For V j e J let X. ■ max [X . , c. .}. Go to 14.

21. An improved feasible solution has been found. Set z* = v(CP) and

record the associated solution (x,y) as the new incumbent. Go to 5,

22. An improved feasible sc1ation has been found. Set z* = v(CP) +

Z_ (l-y.)f. . If 0- y. < 1, set y. = 1, and record (x,y)
i: 0<y.<l 1 1 1 1

i

as the new incumbent. Go to 14.

In step 2 we perform the continuous knapsack pegging test of

Theorem 14 before the pegging test of Theorem 13. While the former

test is weaker them the latter, computation time is generally much

smaller. In step 7 the pegging test of Theorem 14 is used before

the primary relaxations are solved. This is done since the pegging

test is independent of the primary relaxation so]ution, and in fact

does not even depend on an incumbent value, z*. Hence if a variable

can be pegged to 1 via this test, the primary relaxations will be

tightened. In step 8 a simple conditional feasibility test is invoked.

This test assumes that y. is set to 0. If total demand cannot be
i o

satisfied by opening all facilities in K - {i }, then y may be pegged
2 o XQ

to 1. In step 9, all y. i c K„ are substituted out of (CP) , and the
i 2

objective function and constraints are modified accordingly (as explained

earlier) . A transportation or network algorithm is then used to solve

(CP) .]n step 13, the fractional y. s in the transportation solution

are rounded up (thus assuring integfr feasibility) in an attempt to

111

Mi —""^~

'""I1"""1 I »w

generate an improved incumbent. Of course, even if this rounded solution

results in an improved incumbent, the current candidate problem is not

fathomed. In step 17 a simple conditional test is used to try to peg

facilities open or closed. If a facility is pegged closed, then the

conditional feasibility test in step 18 is invoked, since by pegging a

variable to 0 this test is strengthened. Then dual multipliers are

improved in step 19, and the Lagrangean relaxation of step 14 is solved.

Note that the transportation relaxation is bypassed in this case. This

is done since, generally, the transportation relaxation takes much

more computation time than does the LagriJigean relaxafjn. If no

variables are pegged to 0 or 1 in step 17, a branch must be made. The

branching criteria is to choose that variable with the largest penalty,

P.. The two resulting problems are placed in the candidate list such

that the most promising branch is examined first under the LIFO rule

of step 6. In step 18 note that a bound of P. + v(LGR) is associated

with (CP|y. = 1 - y*). When this candidate problem is selected
o o

from the candidate list, this bound is compared with z* to see if it

may be "automatically" fathomed.

The test problems used were a subset of the test problems of

Kuehn and Hamburger [1963] and Ellwein [1970] . These problems have

served as benchmarks for researchers studying the capacitated facility

location problem. As previously mentioned, AK have devised a new

branch c.nd bound algorithm which has dramatically reduced computation

times for this class of test problems.

We mention that in our computer implementation we have not

incorporated the results of Theorems 15 or 16, and (F)was used instead

of (F) in the calculation of v(LGR) . In Table M, our results are

112

 ■■■- m ——rJl—_—JI^^ _ -.■..».-■■ -.- ■ ..^-..■i^-^ ^^^

- •■• ' "" ' '—■'■•*" r»iT..».-T ii ,i i m^ii ,.i.ii,ii n in iijum,.! nuiii.1 IHH.,„I.,IU,I MHI

■:

compared with the published results of AK. Care should be taken in

comparing times for at least two reasons. First, different computdrs

were used. Second, and more importantly, different transportation

codes were used. Sirce transportation code time often accounted for

over 90% of the total computation time in our implementation, a more

realistic comparison would be the number of transportation problems

solved. In support of this, we note that AK used an out-of-kilter code

for certain problems and a primal-dual code for others. Both of these

codes had a complete reoptimization capability. Our code, on the other

hand, had only a limited reoptimization capability. Specifically, given

an optimal solution to (CP), reoptimization was only possible when a

variable y. was set to 1. Reoptimization was not possible when y. was

set to 0. As further evidence of the reoptimization capability, AK

solved a 25 facility by 50 customer problem using the test of Theorem

14, and making one branch in about .2 seconds. With our transportation

code these same computations took over 5 seconds. Generally, we

observed that for easy problems (15 or less transportation problems

solved) the results were quite similar. However for more difficult

problems, our algorithm generally required the solution to fewer

transportation problems.

B. An Interactive Approach for the Parametric Capacitated Facility

Location Problem

In this section we consider the general parametric capacitated

facility location problem, 7). The approach which we shall propose

applies generally to 7) , however, the test problems which we have studied

vary only one of the possible parameters at a time. Sperifically, we

113

»-'-"""iiiniiiii- i ...—.■»■ii—um.« .mi. i i HI -L..I.. .i immfM—MimtiiifcMM^i.

 ■ iwwIP^W—"'»»—i i illim —- "■ !■■. i i i HIII—ITIII i n . .^..F--■■■■<■ ' 'i'. ■ —■ ' ! ^-—~ wi --<

have tested problems with varying demand only, varying fixed costs

only, and varying transportation costs (c. .) only. Because of the

computer cost involved in solving capacitated facility location

problems, we chose not to run test problems for the continuous parameter-

izations in the objective function and in the right hand side.

The plan of this section is to investigate the problem dependent

techniques of chapter III, and the factors affecting the scheduling

of solution priorities in chapter IV. Then an interactive approach for

solving 7) is proposed, and computational experience is cittd.

Reduction techniques for 7) can be quite effective. The pegging

tests of Theorems 13 and 14 should be used for each (P) . Note that

if a parameterization involves only the fixed costs, then both pegging

test calculations need only be done once. This follows since the

calculations remain the same, regardless of the value of the fixed

costs. All that must be done is to compare the calculated figure with

the fixed cost for each k = 1,...,K. For other parameterizations the

test of Theorem 14 may be done separately for each k = 1,...,K, since

all that is involved is the solution of a continuous knapsack for each

facility i for each k = 1,...,K. The test of Theorem 13 , on the other

hand, involves solving a transportation problem for each facility i

for each k = 1,...,K. In order to take advantage of efficient reop-

timization techniques for this test one could solve the K transportation

problems for y., say, as a group, reoptimizing the optinu 1 tableau from

k = 1 for k = 2, etc. This reoptimzation may reduce total computation

time for this test. Naturally, the results of Theorems 15 and 16 may

also be used for each k = 1,...,K. In both cases the computational

114

-^"—-— ■ -- ——- ^ ■■ ■ - . . - ^....^^^^^MMM^^M^^ , . , , 1 1 1 ^U

r* m^mmm^™* i mtmmm 11 ii imm*^w~' ■ '' ""'""f ww^w>ti»«ipp5>wwBw«p«i>*i^ II^IPf.MUHIiailllHIIIIWillIli ii, ii «■■I i m

burden is light, even when repeated K times.

Feasibility recovery techniques have turned out to be very

important for this class of problems. In fact for about one half of the

parameterizations tested, the feasibility recovery technique found an

optimal solution for the next problem in the parameterization. With

the use of thx- solution value as an upper bound, it was possible to

terminate the branch and bound search without any branching whatsoever!

We shall explain this behavior in detail later. Clearly, if the

parameterization involves only the objective function, there are at

least two methods for generating a feasible solution for (P) from

an optimal solution, (x*,y*) to (P). First, since {x*,y*) is feasible

in (P_), we may simply cost out that solution using the objective

function for (P). Second, by using an optimal design of facilities

for (P), we may solve the associated transportation problem with the

objective function for (P). This latter method was used in our computer

implementation. If the parameterization involves the right hand side

and (x*,y*) remains feasible for (P_), one may also solve the associated

transportation problem using the optima1 design of facilities for (P).

If {x*,y*)1 is not feasible in {P2), then one may, for example,

seldctively open enough facilities in addition to the open facilities

in the optimal solution to (P) until feasibility is assured, i.e.

L S. >_ E Dj . Then the associated transportation problem can
i:y.=l jeJ J

Ji J

be solved.

Bounding problem reoptimization techniques can also be very

important. In general at a fathomed node for (P.), one could take the

optimal 1 .ansportation tableau and use it as a starting tableau for

115

■ *■- -- i . ■■ ,.

^^m^mmm ^v^immmm

optimizing the corresponding candidate problem for (P). If an inter-

active procedure is used, one could store the optimal tableau for the

candidate problem on disk or tape, and then read t.'iis Information back

into core when the candidate problem for (P.) at that node is considered.

Finally, wide range bounding techniques may be employed at a given

node. There are at least two possibilities. First (LGR) may be solved

for (P) using the X from the transportation problem solved at the node

for (P) . Second, all constraints could be absorbed into the objective

function using the appropriate dual multipliers from the transportation

problem solved for (P) at the node. However, since both of these

relaxations are of moderate computational expense, the former approach

(which is stronger) should probably be used.

We now turn to the factors affecting the scheduling of solution

priorities. Tightness of the primary relaxation for a given (P) has

been found to be dependent on one main characteristic. We assume for

this analysis that the ratios f./S. are equal for Viel. Let (x,y)

be an optimal solution for (P,). If Z f.y. is "close" to Z f.y*,
k . _ i'i -ii

id iel
where (x*,y*) is an optimal solution to (P.), then the relaxation

will be relatively tight. Conversely, if Z f,y. is much smaller
iel

than Z f.y*, then the relaxation will be relatively loose. Now if
iel

fixed costs are relatively hiph with respect, to transportation costs,

then facilities which are open in y* will probably be operated close

to their upper capacities. The corresponding relaxation will probably

be tight. If, on the other hand, fixed costs are relatively low with

respect to transportation costs, then facilities which are open in y*

will probably be operated at something less than their upper capacity.

116

- MMÜMMMMMM aMMMMWHMMM ■^11 ■■ 11 -^^^

■' tmmiui i win »m ■ ■ ■■■.■■.-i.

In this case the continuous relaxation will probably be looser. Still

another way to look at relaxation tightness is the difference between

£ S,y* and I S.y, » I D, . This difference is manifested costwise
id i 1 in 1 1 jej ^
in the difference between I f.y* and I t.y. . By using these

. _ i i , _ i/i id id
intuitive relationships, one can often "predict" the tightness of the

continuous relaxation as a function of the parameterization. We h ve

the following relationships:

Type of paraineteri»ation Tendency of continuous relaxation

increase c 's tighten

increase f.'s loosen
i

• increase S's loosen if Z S.y* - E D. is small;
1 iel " 1 jeJ j

tighten if large

increase D.'s loosen if I S.y* - Z D. is small;
^ iel 1 1 jej ^

tighten if large

Note that these relationships are also dependent on the relative

importance of transportation costs which in turn are affected by the

number of facilities which are open in an optimal solution. Thus total

transportation cost is higher if fixed costs are high, since this

implies that fewer facilities are open in an optimal solution. So

we see that the transportation costs have an effect opposite that of

fixed costs on the tightness of the relaxation. This is reflected in

the display above.

The behavior of individual facilities in an optimal solution as a

function of certain parameterizations is closely related to the analysis

above. For example, suppose all fixed costs rise by the same amount.

This has the qualitative effect of making the opening of each facility

less attractive. Coupled with the fact that the total transportation

117

jks

r i I

••
'•mm "•■•"

cost for .my qiven facility design remains the sane for both sets of

fixed costs, it is easy to see that this rise in fixed costs is

equivalent to tightening am implicit constraint on the number of open

facilities in an optimal solution. Similarly if demands rise, then

one would expect additional facilities to be opened. A rise in

transportation costs would be accompanied by a tendency toward opening

more facilities also. Of course for certain "local" parameterizat ons,

such as an increase in one fixed cost or an increase in certain

transportation costs, tendencies of specific variables can be identified

more precisely.

The persistence of scratch trees for the parameterizations which

we tested was generally very good. Such behavior would seem to be

plausible when one considers the size of the decision space for our

test problems. The number of facilities considered ranged from 10 to

25, while the number of continuous variables ranged from 200 to 1250.

With a decision space of dimension 25 or less, and the empirical obser-

vation that the majority of facilities are "inqportant", it seems plaus-

ible that they remain "important" for most parameterizations of interest.

If this is the case, scratch trees should be rather stable since "impor-

tant" variables are branched on first in our algorithm. This has been

borne out empirically, and indeed this bodes well for using a serial

approach with an initial separation gleaned from the previous (P) .

'We sbill now present a method for solving problem 7) . Due to

the relatively high computer cost for solution of reasonable sized

problems, we chose an interactive approach. That is, (P) was solved

to optimality in one computer run, and then using information from

this computer run, another run was made to solve (P) . By using this

118

, , , mm^^^mmk _aMaMMaaai

mtm'mmmmmm^ ■ "■i-' •— —

interactive approach, closer control over computation time was possible,

and a freer hand in experimentation was permitted.

Algorithm J:

1. Set k ■ 1. Solve (P) by Algorithm I getting an optimal solution,

(x*.y*)k.

2. If k > K, stop. If (P,) and (P, ,) are relatively monotone, if k k+1

their objective lurctions are identical, and if (x*,y*) e F(Pk+-|)'

then (x*,y*) is optimal in (P), so let It - k + 1, and returv

to the beginning of this step.

3. Set k » k + 1. If k > K, stop.

4. Use a feasibility recovery technique on (x*»y*)jt-l
to ^■'■nd a goo<3

feasible solution for (P.). Call it (x*,y*) and its corresponding
K it

value z*. k

5. Invoke Algorithm I for (P) with the following modifications:

a) veplace step 19 by: "store the current index sets K , K , K ,

the incumbent (x*,y*) , and z*, emd return to step 6 of

Algorithm J."

b) replace step 5 by: "stop if the candidate list is empty: if

there e;-ot;ts an incumbent ;.t is optimal in (P.)» return to

step 2 of Algorithm J."

6. Use some modification of the branch and bound tree for (P, ,) to
k-1

form an initial separation for (P). Put this initial separation

in the form of a candidate list, and go to step 6 of Algorithm I.

When the stop condition in step 5 of Algorithm I is satisfied, go

to step 2 of Algorithm J.

In step 2, since 7) is a general paraiuetric problem, we require

119

■ ■

^hM in

*TB&ll&*W*i i.

W <>i< mia^muMMIMIPi

identical objective functions. However, this can be relaxed for certain

objective function changes. In step 4 the particular feasibility

recovery technique will depend on the type of parameterization. In

step 5 a modification of Algorithm I is used in order to perform tha

pegging tests of Theorems 13 and 14, and other pegging tests based on

the Lagrangean relaxation (LGR) for (P.) . This procedure continues

until either fathoming occurs (in which case (P.) has been solved), or

until a point is reached where no more pegs can be made. When no more

pegs can be made, control passes to step 6 of Algorithm J. In step 6

an initial separation based on the branch i id bound tree of (Pk_,) is

generated. The reasoning behind this approach is as follows.

Generally, the pegging tests of Theorems 13 and 14 are quite

effective in jogging facilities open at the root node. Hence these

tec'ts t re performed for each (P,) in order to reduce the number of
k

frf-e facilities in the problem, and hopefu]ily to reduce the number

or branclr's made during the branch and bound process. A modification

of Iht: branch and bound tree for (P. ,) is used to form an initial
k-1

separation because of the pegging procedure in step 5. The modification

caj. best be explained by referring to a typical branch and bound tree

for (P) («ee figure below).

5 A ö

'8 o \) ^8

V0 0 V0

y =0 i y =o

Branch and bound tree for (P) Frontier of fathomed nodes for (P)
(denoted by •)

120

 '■-■- i im^ammmmmimiiii^^m -^ , -^--iii

F M i

f'l

'

■

Note that vertical lines refer to pegged variables. That Is,

the oppoaitG branch Is automatically fathomed. It Is important to

realize, however, that these opposite branches are part of the frontier

of fathomed nodes as depicted in the figure above. If this full frontier

were used as an initial separation for (P), the number of problems in

the initial candidate list would be 13. However by "collapsing out"

the pegged variables from the tree, we may reduce the frontier to 4.

See the figure below.

V0o/\y8"1

"Collapsed" branch and Frontier of fathomed
nodes for "collapsed
tree (denoted by #)

bound tree for (P) nodes for "c-illapsed"

While such a manipulation may appear contrived, we offer the

following explanation. In the seriell approach, which uses the frontier

of fathomed nodes, there is an underlying supposition. It is that in

a branch and bound tree if a node cannot be fathomed for say, (P) ,

then it probably cannot be fathomed for a closely related problem,

say, (P,)« Conversely, if a node is fathomed for (P) , then it likely

will be fathomed for (P) also. A variable which is pegged to a

certain value can be thought of in an analogous manner. If y. can be

pegged to 1 in (P.) at a given node, then it can probably be pegged to

1 in (P_) also at that given node. Hence, instead of considering the

full frontier of fathomed nodes for (P), we may eliminate the pegs

from the tree, and attempt to peg variables at the root node of (P) as

in step 5 of Algorithm J.

121

w^** I ■■!• ■ "-

^ '

We note that other methods for reducing the frontier of fathomed

nodes,while still maintaining a "good" initial separation, are possible.

However, we shall defer discussion of them to chapter VIII.

As a final comment on Algorithm J, we submit that the ordering of

the Initial candidate list in step 6 can be very important. We present

three orderings which have proven to be effective:

a) Order the candidate problems by the inverse ord^r in which

they were fathomed for the previous problem. That is, the

candidate problem fathomed first is placed at the end of the

list, so that under a LIFO rule, it will be examined first.

b) Order the candidate problems in decreasing order of their

relaxation values for the previous problem. Thus, under a

LIFO rule the most promising candidate problem will be

examined first.

c) Modify the ordering in a) or b) by placing last in the list

the candidate problem at which an optimal solution for the

previous problem was found.

In our computational studies, ordering b) coupled with modification c)

was generally the best of these orderings.

Test problems were taken from the problems in Table M. For

example, problems 1, 2, 3, and 4 differ only in fixed costs, as do 6,

7, 8, and 9, and 16, 17, 18, and 19. Other problems were generated by

increasing all customer demands by some percentage (i.e. D. + 5%), while

still others were generated by increasing all transportation costs by

some percentage (i.e. c. . + 10%). Algorithm J was compared with a

traditional approach which follows.

122

in ,mm^t** ^mtmm
.. ■■ - -^ .. - . .

W<" ■ " ■ i i i ii w fm,fm^w*m mw*w « II i «l^li -■- 'ymT

Algorithm K;

1. Set k - 1.

2. Solve (P) by Algorithm I getting an optimal solution (x*,y*), .
k k

3. Set k - k + 1. If k > K, stop.

4. Use a feasibility recovery technique on (x*,y*) to find a good

feasible solution for (P) . Call it (x*,y*) and its corresponding
K it

objective value z*. Go to 2.

A comparison of the two algorithms is given in Table N. Note that

the computation time includes the time for the Theorem 13 pegging tests,

but that the number of transportation problems solved does not include

the (|l| ■* i) transportation problems solved for this pegging test. We

mention that the computation time for this test is much higher than it

would be if a reoptimization capability were available in our trans-

portation code. Because of this shortcoming, the savings realized

by Algorithm J over Algorithm K are reduced. Note that in 4 of the 8

parameterizations tested, only one transportation problem was required

to solve each problem after (P) . This was due to the fact that the

solution generated by the feasibility recovery technique was an

optimal solution, and that the Lagrangean relaxation penalties were so

strong that many of the remaining free facilities were pegged open or

closed. Then after these pegs were made, the corresponding Lagrangean

relaxation value bounded out.

In conclusion, we see that Algorithm J dominates Algorithm K. For

various reasons mentioned t-iroughout this chapter, it is reasonable to

assume that this domination can only becorae more pronounced as more

difficult problems are solved.

123

 ' ii i w ttm\\

pppv ■ —'7"r—~—" •' ^■T-—^-^

■■

I

IM
0

8
S
M
V

rH
0
•p

>1
H -P

^1
0 Qi
Ö1

'S *

^ H
-t 0
13 H jq
H < 4-1

■H

^ 0
tr

0 3
C
0 •
n o
•H s.
M H
«J
9< m

,s
a
^i
ü
X
e;
U)
•0
B
u
a)
U)

c
•H

g
■r(

H

S O
Xl vo

•H \
H O
0 r>-
i-i

H 9 ^

11

EH

V)

^^
OH«

• 0 i-t
QUO
z o. en

•4-1 0) -C

> o
XI • o ^

O U Q
2! a. w

tf)
0) H

p
•«-4 H

O H
^ • u

0 (0 z b

ft

oo a> vo »"i i1 O rvl CO H V O rH VO ^r ON

«a1 m m in CO in vo i^ o
i-H

ft r-t
rH in rH

in

t^ H 0> 00 & vfl f^ (N m m 0\ 00 00
•H n fM o» ^ n CI

5 S fS <N n vO r> c ^r VD T (N o 00 00 VO (N
1 1 • • ■ • • • • • CN • • • •

0 H O ffi (T» fl> en oo ^r H r~ (N ■*

H H iH rH n m A rH

^T r- r~ r~

o o o o
o o o o
o o o o
m in in in

in «3" o^ ro n T 1 O CM n o
^ co n rH 00 'S' (N

o o o o o o o o o o o o o m in
in m in in in in in in m m in in in •* T

vO vO ID vO VD 10 iO 10 t£ in m in in
rH rH rH rH rH H rH rH rH CM (N CM fN

o o o O o O o o o O o o o
1
o o o o

o o o o o O o o o O o o o o o o o
m in in o in in in in o in in in in o o m o
r» fM r^ m t- r» CJ r» in r« fN r^ tN in O fN o

rH rH (N rH rH H fN rH rH rH ^ <N KD

o
o
o
o

o o o o
o o o o
o o o o in in in in

o o
o o
o o
in in

o o
o o
o o
in in

i i
o o o o
o o o o
o o m in
rH in rH r~

rH fM CO Tf ID r~ CO <Ti O rH CM m

124

UMIIHII i i iMMMMMMM

HMOTMOT ■ ■•iiii mini I n I «PI IVI>.«WI»I 11,. i j mini iiiiinii iiiiniuimi mi iiin , wvm>"i'>.mm»n*m!"rA

l L
«M § -a

. 0 H
O V 0
z CL, ui

^r H ro r< • • • •
H >-4 r-4 CM

(JS rH m V
H (N <N ^

.5

5S
U O1

o r;
O» en

S5

•u

g
M

O M 0

0

§5

Igg

z z z

o o o o
OM «M <N CN

O O O O

O O O O
O lO O O
in r» o o
IN ro m m
r-t r-l iH IN

s

I
o o o o
o o o o
o o o o
in in in in

vo r~ oo <T»

125

-- - ■-

^ummtm^r^^w^vn n mwns api n

■

—^, l.^il, mt f > M ! mumww^'p

0.

I
81

•
a
m
i: UJ

§ •0
H 2
S 04

0
wl

00 in fN (Ti

^ <N (N rH

1^ rH o> oolin

O VO (N

H in (N ^t

00 ^ r-l m r-t|<Tt <Ti fl (N rolr-

r-t H «H (Nlm in \o

vc M r~|■«^, o> H f> ^Ir- ^H H IH H|«*
H Hlro i-H (N <N ^ O >H IH

•9

•r<

r-t

o
IÖ

CM

'S
+J
•rl
U
Ifl

&
u
o

•rl

•P

o o
10
CO g

H U
0)

3 0 •u
e
0

■p

u

&
a)
5
0

«4-1

u 01

C 4-1
■H -H

M

g er
•r(r-t
H IT)

•r(
V4
0
0>

5

•H

0
öS

Sä

M 0) T)

XI >
• O H

0 M O
2 OJ tn

rH
HS

•H
•w

0)
•p
Ifl
T)
•H
T3
C
n)
u

U)
0)

■H
■^

IW •H
0 •-•

■H • "
0 t\

S5 U'\

00 in CN IN r^

^r IH 1-1 1-1I00

r~ r~ m ml^"
ItN

1-1 in in in

0000
in in in in

o H mlvß v P» 00 volin cn n ro rMlt^

in CN ro|o H r-il^' in |io

KD 00 ro|p» o^ r-t ro ^ItM
r-t fM H r-t r-t (N | r«

H r-t rr

in in

000
in in in

0000
<N| CM (N rvi

in in in in
rr ^r <T ^j-

KD vß VO iß vß 10 10 0 O 0 O in in in in
i-t r-l rH H

(fl
i-l

1

rH rH H H rH ^i rH

rH
(0

rH rH rH rH
m
H
<0
P
O

O O 0 O O O O O O 0 O OOO
O O 0 O O O O ü in 0 O H CN n
in in in O in in in in r- 0 O + + +
r~ CN t^ in r~ <N 1^ (N ro in in .rl .H .H .rl

1-1 rH (N rJ H H i-t rH CN IM IW HH UH

. . . . • , , , • • , • • • t
4-> +J P 4J +J P V •u 4J 4J •p 4J P P +J
in cn Ifl «1 w tn in m tn Ifl w in in m m
U CJ O U u U Ü U U u u CJ u u U

• • , • , , • • , . . ■ • • 1

.3.3 .H
X

.rl
X

.rH
X

•H •2 .3 X
.H .3 X X X X

.rl .rl -rl -H
U, b [L, (14 b h t, IM t, b b fa b [14 fo

rH <N Cl t 10 r~ 00 iO r« 00 ^
i-t tH r-t

in in in in

126

^x..-..^-. ..■.^..I..^.^,_1^

■IMI^KII 11

pap N^V 1 " "^m^vmmm**' ■^■^P^IIMJIHILHIIIIIH^I HI' "- IWIPI

jfiy^fv^. ^-•»*i' ■

« 0)

o 3

•
ft
Ifl

^
U 1) r1
H r-l "

A > • 0 "-< o u 0
z & W)l

o M) r~ m a» eo r^ ^ 00 <j) VO o o r- r- »r
in m n m oo m o * rn n

r-l
in n ra

i-(

^0 loo <-t (N M TJ> r~ H rH (^ 10 rH M oo

c
•H

R

U

Si

n) 0)
4J e

m

•9 >> • O rH

2 0< Wl

•H 4J
4J «
•H "O

0) H "O

■H <«
w o u ^

o r- r-l^r <n r- r^ ro oo vo in <n o r- r^ ^
m ro n <N

IrH
in vo m 00

rH
«r n ro iH in ro ro

i-(

V0 H i-tlCO rH TJ- r-tlvO
rH i-l iH ro

r» fi rH (Tl

rH I I

vO oo

t
n\
A
)\

MH
0 i jl

■■']
t i

0 n\
z ul

o o o in m in o o o o o o
in m in T ^ T in in in in m in

tn

>>
•H

■'J

14-1 •H
0 r-l

■H • A
0 Hi
z t.1

v0 kD VD m m in VO VO VO vfl vO VO
H H >H fH rH rH H H rH H rH rH

U) tn tn Ifl
r-H H rH rH
Ifl (0 10 (0
•P ■P ■M •P

g 8 o
<*> # EH

0
*> EH

(*> dP O O O O
* o # O H (N rH fN
in i-i in rH + + + +
+ + + + •n -r-i -r-i •i-i -r-i -r-i

■n •("» •n ■n -r-i -n •H -rt H •r(-H -H
Q Q Q Q Q Q Ü U O Ü U Ü

(fl Ifl U)
"o "0 "O

W CO Ifl ., .
x) «o -O Ot at a* 04 04 04

E e s
c c c
«0 (0 ifl

u) in to

10 (Q 10

M in w

(D iu (0

ÄSS m 0) flj
Q Q Q

M *>< M M V4 V4
EH EH EH h EH EH

vo VO vO in in in vo vo vO

127

mmt* 11—1—egj^y .■1» - — - Ml

^^m* ""I"" ■" ll^" '"■y ■""I"

VIII. EXTENSIONS TO THE GENERAL PILP AND AREAS FOR FUTURE RESEARCH

A. A Solution Method for the General PILP

In the preceding three chapters we have analyzed PILPs for special

problem classes. In this section we extend what we have learned to

the general PILP:

8) For k ■ 1,...,K solve:

<v
min (c + f,)x

k

(A + D,) x > b + r,
k — k

x. integer, j e J

where f , D , and r are conformable with c. A, and h respectively.

Cur goal is.to give prescriptions for solving the PILP in an

efficient manner. In chapter IV, three solution priorities were

outlined: serial, lexicographically serial, and parallel. The reader

will recall that only the first two priorities were considered in our

computational studies, since the parallel approach seems to be dom-

inated by both of the other approaches. In this chapter we shall

reduce consideration to only one approach, namely, the serial.

The lexicographically serial approach (l.s.a.) has one inherent

weakness. I't is that individual (P.) are not solved to ootimality in
k

any preordained order. For the analyst who must solve the general PILP,

this could be disastrous, given a limited computer budget. In tha

l.s.a. there is no way to monitor or control the amount of computer

time spent on a particular (P) . In fact, after an inordinate amount

of computer time has been used, it is possible that only minimal

progress may have been realized in the solution of each (P) .

128

at .MMMM ■«■MMMMMaWM ■"" ■ ' -' ■ - - ■• ^ ii ■ - - ■ niMdi

I

•

'W'*I""I"^>I,■"^" ' '"WWII IIIIIWWI ——^ -

Furthermore, we point out that the primary advantages of the l.s.a.

can be overcome by clever implementation of a serial approach. Two

advantages of the l.s.a. are tho small amount of bookkeeping calculations

juid core storage required. However, for more difficult PILPs, the

bookkeeping time becomes insignificant, since the time required for

solving the primary relaxation at each node generally is the lion's

share of total computation time. This was manifested in the facility

location problem of chapter VII, where over 90% of total computation

time was devoted to the solution of transportation problems only. For

more difficult problems, computer core limitations impose serious

restraints on the serial approach. This is avoided in the l.s.a..

However by using an interactive serial approach (i.s.a.) as outlined

in d '.er VII, node information is stored either on high speed disk

or tape, and hence the core storage problem is alleviated. A third

advantage of l.s.a. is the reoptimization capability from problem to

problem in the PILP. That is, at a given node the optimal bounding

problem relaxation solution for say, (CP), is used as a starting

point for the solution of the relaxation for (CP) . Oftentimes this

reoptimization technique can realize significant savings in computation

time. This scheme may be used in the serial approach as well, by

simply storing the optimal basis (when LP is used as the primary relax-

ation) for the relaxation of (CP) on disk or tape. Then, when the

relaxation of (CP) is to be solved, the corresponding basis can be

retrieved and used as the starting basis. Of course this retrieval

incurs a setup time, but as pointed out earlier, setup time is

insignificant for more difficult problems. Thus, the advantages of

129

"'"* i.—."• "" ' . ,„

im ii i i ii 11 \\wmmmmm "i11"' ■ •" ' i"1 ' ■ ■ ' '• " ■

of the l.s.a. can be neutralized by judicious use of an i.s.a..

We now analyze the i.s.a., and point out the more important

factors in the implementation of such a method. By incorporating the

human factor into the process, not only is closer control in monitoring

the computation process possible, but greater flexibility in solution

strategies can be realized. An i.s.a. allows the analyst to glean

information from the solution process for (P) in order to solve (P)

more efficiently. There are at least four sources of this information.

They are:

• an optimal solution for (P^

• root node penalties and a branch and bound tree for (P..)

• success of branching criteria in the branch and bound tree

• relative effectiveness of various fathoming tests.

Each of these sources can be most helpful in planning a solution

strategy for (P-) . In the following few paragraphs we sh^ll. analyze

each of these sources.

Various feasibility recovery techniques have been presented for

the special problem classes of chapters V,VI, and VII. For the general

PILP, such techniques may or may not apply, depending on the type of

parameterization. Therefore in order to be assured of flexibility in

the feasibility recovery technique, it may be advisable to have the

analyst apply ad hoc techniques for obtaining a feasible solution to

(P) from an optimal (or just feasible) solution to (P..). Such

techniques, of course, can be coupled with a computerized optimization

scheme, for example, where all integer variables are fixed to a specific

value.

130

m\^m I I mil—^^ ■ ■ ■■ i.i.-. • i.. . -.

The root node penalties and the branch and bound tree generated in

solving (P) can be used as a guide in generating an initial separation

for (P). First, consider the penalties generated at the root node for

(P.). Such penalties are generally calculated in order to choose

branch variables. They may be LP based, or they may be a by-product

of a Lagrangean relaxation. Lagrangean penalties can be

quite a bit stronger, and at the same time require fewer calculations

(Geoffrion [1973]). By ranking the absolute values of these penalties

in descending order, one can get some feeling for the "important?" of

the individual integer variables. Such a ranking is valuable since in

a branch and bound process it is preferable to branch on variables

which have large penalties, early in the branching scheme. After (P)

has been solved and the root node penalties have been ordered for (P) ,

the root node penalties for (P.) are calculated and ordered also. By

comparing the orderings for (PJ and (P.), one can get some indication

of whether the "important" variables in (P.) are "important" in (P_)

also. If this is the case, it is reasonable to assume that the branch

and bound tree for (P..) will generate a "good" initial separation for

(P-). If, on the other hand, the orderings are quite different, the

branch and bound tree for (P) may generate a relatively poor initial

separation for (P-) . In this case it may be better to either solve

(P_) with no initial separation, or to use some separation based on

the root node penalties for (PJ with little or no input from the (P..)

solution process.

Considering the case where the root node penalty orderings are

reasonably correlated, a number of possible choices exist for the

131

■ ■■■—

generation of an initial separation. The simplest, of course, is to

use the frontier of fathomed nodes from the branch and bound tree for

(P) . However, as we have seen in chapterw V and VII uucli a separation

may be rather large. A number of modifications can be made which

reduce the size of the initial separation, while still retaining the

power of the separation. First, variables which were pegged to a

specific value can be "collapsed out" of the tree (cf. chapter VII.B).

Second, branches which would not have been made if the optimal solution

to (P.) had been known at the beginning of the solution process can be

eliminated. These additional branches can occur if the optimal

solution value for (P) './as not found until late in the branching

process. In this case, the additional branches were made because the

fathoming by value test used an inferior incumbent value. Selected

branches may also be eliminated if the parent node of the branches had

a relaxation value "close" to the optimal solution value for (P) .

Thus the node was "almost" fathomed, but since it just missed being

fathomed, a branch had to be made. Since our general supposition in

the serial method is that if a node is fathomed for (P.), it will

probably be fathomed for (P) as well, we see that it is reasonable to

include nodes which are "almost" fathomed in our collection (and to

eliminate the successor nodes of these nodes from the collection).

Still another method for > educing the size of the initial separation

is to use only those branches which are on the optimal path. That is,

the path from the root node to the node where the optimal solution

was found. See figure below.

132

■■ ^ ■■- - - -■■- --- - .--..■■ — „ — _ , nMmiM^^MMMBMif JaM^a

vtv ■

I

•

\

/■

/
X) 6 oo

optimal solution
at this node

/
a' o

0 0

Branch and bound tree for (P) Initial separation using
the optimal path only

For the case where the root node penalty orderings for (P) and

(P) are not well correlated, another initial separation based on the

(P) root node penalties can be generated. Specifically, we may commit

a number of variables as branch variables using the (P) penalty

ordering. See figure below.

Initial separation for (P)
using root node penalty ordering

In this case the left hand branch constrains tLe variable to its

"favorable" value as deduced from the penalties. The variable with

the largest absolute penalty is committed first, the second largest

second, etc.

The relative effectiveness of branching criteria for (P) may be

used in formulating the branching criteria for (P) . A measure of

the effectiveness of a branching criterion is the number of "mistakes"

made in the branch and bound process. A "mistake" is defined to be

investigation of the x. * 1 branch first,say, when the x. ■ 0 branch

133

 ...

■

contains an optimal solution for (P.). That is, the branching criterion

indicates that the x, >» 1 branch is preferred over the x « 0 branch,
i i

when in fact the x, = 0 branch contains an optimal solution. By

keeping track of the mistakes 'n a branch and bound tree, one can

identify a threshold penalty value below which the branching criterion

may no longer be reliable. Furthermore it may be possible to identify

specific variables for which the branching criterion is unreliable.

By categorizing variables according to their penalty indicators for

(P) and (P) as well as according to the anticipated effect of the

parameterizatiou on each variable, one can "predict" the reliability

of the (P) penalty indicator for each variable. The following display

delineates the possible cases. In using this display, we assume that

an optimal solution to (P) has been found, that the root ncde penalties

have been calculated for (P) and (P) , and that ein intuitive analysis

has been made concerning the effect of the parameterization on each

variable. Further we assume that all integer variables are 0-1.

Penalty Indicator
for (P^

Penalty Indicator
for (PJ

• indicator agrees indicator agrees
with optimal solution with penalty indi-
value in (P) cator for (P)

Reliability of Penalty
Indicator for (P)

a) very reliable if
param. tends to keep
variable at same value
b) reliable if opposite
of a)

• indicator agrees indicator disagrees
with optimal solution with penalty indi-
value in (P..) cator for (P)

c) uncertain but tending
to be reliable if param.
tends to change value
of variable
d) very uncertain if
opposite of c)

• indicator disagrees indicator agrees
with optimal solution with penalty indi-
value in (P) cator for (P)

e) uncertain but tending
to be reliable if param.
tends to change value
of variable
f) very uncertain if
opposite of e)

134

>i,w- ■„■ „-.^^.
-j i ^•MMA^M

'"''^ -. - ,| g^gfr

• indicator disagrees indicator disagrees g) uncertain but tending
with optimal solution with penalty indi- to be reliable if param.
value in (P) cator for (P) tends to keep variable

at same value
h) very uncertain if
opposite of g)

By categorizing each variable by its reliability, one is able to

modify the branching criterion in at least two ways. First, a threshold

for variables can be established, below which variables should be chosen

for branching by some other criterion. Second, if a reliable variable

and an uncertain variable are being considered for becoming the next

branch variable, the reliable variable should always be chosen. Thus

it is possible to modify branching criteria through the use of root

node penalty indicators for (P) and (P.), as well as by intuitive

tendencies deduced from the type of parameterization.

The fourth source of information for making the (P) solution

process more efficient is the effectiveness of various fathoming tests.

For example, if some conditional logical tests were ineffective for

(P), then one might consider the elimination of such tests for (P_) •

Similarly, if calculations which attempt to tighten the primary

relaxation generally fail for (P), they might be eliminated for (P).

In conclusion, the i.s.a. is a very flexible approach which

allows the analyst to modify solution techniques in such a way that

the experience gleaned in solving (P) is used to maximum advantage

in the solution procedure for (P) .

B. Future Research

In this section we give a brief outline of topics in the PILP

area which are fertile for further research.

135

■ -|lllHliilMl—laiWlliiB ml i i -- ■, ! mama^^m^mttmm

One such area is the study of the optimal solution as a function

of a specific parameterization. We have alluded to this in chapters

II and III. Hopefully, stronger and more useful results can be devel-

oped for other problem classes which take advantage of the knowledge of

an optimal solution for one problem in order to solve a closely related

problem. Such properties as continuity, monotonocity, and convexity of

the optimal solution (possibly in certain components) and of the optimal

solution value would seem to be worth seeking.

Still another area is the use of other methods such as cutting

planes and group theory either alone or in conjunction with a branch

and bound approach. We have outlined a rudimentary cutting plane

approach in chapter I. It may be that such an approach would be quite

effective. More premising, however, might be the incorporation of a

cutting plane capability in a branch and bound scheme.

Third, a parametric: capability must be designed for use in conmer-

cial ILP codes. An interactive serial method as outlined in section A

of this chapter «rould seem to permit relatively simple and inexpensive

implementation.

Fourth, it would seem likely that the solution method of chapter

V.D can be extended to certain nonlinear parameterizations where the

optimal objective value is a concave (for minimization) function of 6.

Fifth, we note that techniques for parallelizing computations

would be most effective in a PILP context. Such an approach would rely

on the implementation of specific computer data structures. Further-

more, the advent of fourth generation computers such as ILLIAC IV which

performs computations in parallel should also have a telling impact on

PILP algorithms.

136

-j—' - ill tri. ._^ Miili^MiMiMM^aM

T

In conclusion, we surmise that parametric methods in integer pro-

'jianininq will assume greater importance as ILP solution methods improve.

Just as in LP, where parametric analysis has become an expected and

useful part of moat solution studies, we expect the same to occur in

ILP. We acknowledge that our study of PILP is just a beginning. The

true test of a method lies in its use by those who can benefit by its

availability.

«

137

BIBLIOGRAPHY

L. Akinc, U. and Khumawala, D.M. , "An Kfficient Branch and Bound Algo-

rithm for the Capacitated Warehouse Location Problem," Graduate

School of Business Administration, University of North Carolina, 1974.

2. Benichou, M., Gauthier, J.K,, Girodet, P., Hentg&s, B., Ribidre, G.,

and Vincent, 0., "Experiments in Mixed Integer Linear Programming,"

Mathematical Programming, Vol. 1, No. 1 (1971), pp. 76-94.

3. Bowman, V.J., "The Structure of Integer Programs under the Hermitian

Normal Form," Operations Research, Vol. 22, No. 5 (September-

October 1974), pp. 1067-1080.

4. , "Sensitivity Analysis in Linear Integer Programming,"

Alir, Technical Papers, 1972.

5. DeAnqelo, H.C., private communication, March 1974.

6. Dembo, R.S., private communication. May 1974.

7. Efroymson, M.A. and Ray, T.L., "A Branch-and-Bound Algorithm for

Plant Location," Operations Research, Vol. 14, No. 3 (May-June 1966),

pp. 361-368.

8. Ellwein, L.3., "Fixed Charge Location-Allocation Problems with

Capacity and Configuration Constraints," Technical Report No. 70-2,

Department of Industrial Engineering, Stanford University,

August 1970.

9. El-Shafei, A.N. and Haley, K.B., "Facilities Location: Some

Foundations, Methods of Solution, Applications, and Computatic,

Experience", O.R. Report No. 91, North Carolina State University

at Raleigh, May 1974.

10. Garfinkel, R.S. and Nemhauser, G.L., " The Set Partitioning Problem:

Set Covering with Equality Constraints," Operations Research,

Vol. 17, No. 5 (September-October 1969), pp. 848-856.

138

mmmmmmmmmmm*LM*mtumammtlmmmmtm**m i mm ■ i.n , ,,,aVMMmm^mmmmammtmimimm • - - - -

r

11. and , Integer Programming, John Wiley and

Sons, Inc., 1972.

12. Geoffrion, A.M., "Lagrangean Relaxation for Integer Programming,"

Western Management Science Institute Working Paper No. 195, UCLA,

December 1973. (Forthcoming in Mathematical Programming.)

13. , "Distribution Systems Configuration Planning: A

Strategy for Managerial Decisions Through Computer-Based Analysis,"

Western Management Science Institute Working Paper No. 21?, UCLA,

September 1974a.

14. , "A Guide to Computer Assisted Methods for Distribu-

tion Systens Planning," forthcoming in Sloan Management Review, 1974b.

15. and Graves, G.W. , "Multicommodity Distribution System

Design by Benders Decomposition," Management Science, Vol. 20, No. 5

(January 1974), pp. 822-84'j.

16. and Marsten, R.E., "Integer Programming Algorithms:

A Framework and State-of-the-Art Survey," Management Science,

Vol. 18, No. 9 (May 1972), pp. 465-491.

17. Greenberg, H. and Hegerich, R. , "A Branch Search Algorithm for the

Knapsack Problem," Management Science, Vol. 16, No. 5 (January

1970) , pp.327-332.

18. Hammer, P.L. and Nguyen, S. , "A Partial Order in the Solution

Space of Bivalent Programs," presented at the 41st Meeting of ORSA,

New Orleans, Louisiana, April 1972.

19. Horowitz, E., and Sahni, S., "Computing Partitions with Applicatijns

to the Knapsack Problem," Journal of the Association for Computing

Machinery, Vol. 21, No. 2 (April 1974), pp. 277-292.

20. Ingaragiola, G.P., and Korsh, J.F., "Reduction Algorithm for Zero-

One Single Knapsack Problems," Managetnent Science, Vol. 20, No. 4

(December 1973) pp. 460-463.

139

iiB^«.,.n'i.M.ni.iil.A>Mi..ii..llflniirir .,,.,.■. „ — -„ . , . ^.M|M|Big||Ma|||j|(|j|||||BitMMMimj_ i

■'•

*mmm mm ^•^^^^mmrvm

?.\. Kuohn, A.A. and Ilamburqer, M.J., "A Heuristic Program for Locating

Witrohouimn," ManjMetnont Science, Vol. 9, No. 0 (July 1963),

pp. 643-bbt).

22. Manne, A.S. (ed.). Investments for Capacity Expansion: Size,

Location, and Time-Phasing, The MIT Press, Cambridge, Mass., 1967,

p. 201.

23. Marsten, R.E., An Implicit Enumeration Algorithm for the Set Parti-

tioning Problem with Side Constraints, P'l.D. Dissertation, Univer-

sity of California, Los Angeles, Octo'jer 1971.

24. Martin, G.T. , "An Accelerated Euclidean Algorithm for Integer

Linear Programming," in R.L. Graves and P. Wolfe (eds.). Recent

Advances in Mathematical Programming, McGraw-Hill, 1963.

25. Noltemeier, H., "Sensitivitalsanalyse bei disketen linearen Opti-

mierungsproblemen," in M. Beckmann and H.P. Kunzi (eds.). Lecture

Notes in Operations Research and Mathematical Systems, #30,

Springer-Verlag, New York, 1970.

26. Piper, C.J. and Zoltners, A.A., "Implicit Enumeration Based Algo-

rithms for Postoptimizing Zero-One Programs," Management Sciences

Research Report Nc. 313, Graduate School of Industrial Administra-

tion, Carnegie-Mellon University, March 1973a.

27. and

28.

29.

, "A Pragmatic Approach to 0-1 Decision

Making," Management Sciences Research Report No. 316, Graduate

School of Industrial Administration, Carnegie-Mellon Univeristy,

April 197 3b.

Radke, M.A., "A Continuity Theory for Mixed Integer Programming,"

Discussion Paper, Operations Research Study Center, Graduate

School of Management, UCLA, May 1974.

Roodman, G.M., "Postoptimality Analysis in Zero-One Programming by

Implicit Enumeration," Naval Research Logistics Quarterly, Vol. 19

(1972), pp.435-447.

140

M in

i

IWWW^^miWWIW^W^^^^^^'^W^W—i i. 'm.>vw*^m^m*l*****mmw WWIIIH n m iiiiiinmmii» IHIIHI ,III iq.^, i^ . ^ -

30. , "Postoptimality Analysis in Integer Programming by

Implicit Enumeration: The Mixed Integer Case," The Amos Tuck

School of Business Administration, Dartmouth College, October 1973.

31. Ross, G.T. and Soland, R.M., "A Branch and Bound Algorithm for the

Generalized Assignment Problem," forthcoming in Mathematical Pro-

gramming, 1974.

32. Sä, G. , "Branch-and-Bound and Approximate Solutions to the Capaci-

tated Plant-Location Problem," Operations Research, Vol. 17, No. 6

(November-December 1969) , pp. 1005-1016.

33. Wagner, H.M., Principles of Operations Research, Prentice-Hall,

Inc., 1969.

141

—, .^aahUHMMlilAHu^.,

